Exercice 1 (ecricome 2017)

A1) On trouve
$$A - I = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{pmatrix}$$
, $(A - I)^2 = \begin{pmatrix} -6 & 6 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $(A - I)^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

A2) Comme $(A-I)^3 = O$, le polynôme $P(X) = (X-1)^3$ est un polynôme annulateur de A. Donc $sp(A) \subset \{racines\ de\ P\} = \{1\}$.

Ainsi, la seule valeur propre possible de A est 1.

Enfin, A-I n'est pas inversible puisqu'elle possède deux lignes identiques donc 1 est bien valeur propre de A.

On conclut que $sp(A) = \{1\}.$

 $\mathbf{A3}$) 0 n'est pas valeur propre de A donc A est inversible.

Supposons A diagonalisable. Alors, il existe une matrice P inversible et une matrice D diagonale telles que $A = PDP^{-1}$.

Les éléments diagonaux de D sont les valeurs propres de A et valent donc 1, ainsi D=I.

On déduit que $A = PIP^{-1} = PP^{-1} = I$, ce qui est absurde.

Donc A n'est pas diagonalisable.

 \checkmark On pouvait aussi chercher $E_1(A)$, constater que sa dimension est strictement inférieure à 3 et conclure par le thm de réduction.

B4) La fonction $x \mapsto 1 + x$ est de classe C^2 sur]-1;1[, prend ses valeurs dans $]0;+\infty[$ et la fonction $x\mapsto \sqrt{x}$ est de classe C^2 sur $]0;+\infty[$. Donc par composée, φ est de classe C^2 sur]-1;1[.

On a
$$\varphi'(x) = \frac{1}{2\sqrt{1+x}}$$
 donc $\varphi'(0) = \frac{1}{2}$.
Puis, $\varphi''(x) = \left[\frac{1}{2}(1+x)^{-1/2}\right]' = \frac{1}{2}\left(-\frac{1}{2}\right)(1+x)^{-3/2} = \frac{-1}{4(1+x)^{3/2}}$.

Donc
$$\varphi''(0) = -\frac{1}{4}$$
.

B5) φ étant de classe C^2 sur]-1;1[, on peut lui appliquer la formule de Taylor-Young en 0 à l'ordre 2, ce qui donne :

$$\varphi(x) = \varphi(0) + \varphi'(0)x + \frac{1}{2}\varphi''(0)x^2 + x^2\epsilon(x) \text{ avec } \lim_{x \to 0} \epsilon(x) = 0.$$

Soit,
$$\varphi(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\epsilon(x)$$
 avec $\lim_{x\to 0} \epsilon(x) = 0$.

Donc
$$\alpha = -\frac{1}{8}$$
.

B6) On a
$$P(x)^2 = \left(1 + \frac{1}{2}x - \frac{1}{8}x^2\right)^2 = \dots = 1 + x - \frac{1}{8}x^3 + \frac{1}{64}x^4$$
.

On a
$$(P(C))^2 = I + C - \frac{1}{8}C^3 + \frac{1}{64}C^4 = I + C$$
 car $C^3 = C^4 = O$ par **A1**). D'où $(P(C))^2 = A$.

Ainsi, P(C) est une matrice M vérifiant $M^2 = A$. Il reste à expliciter P(C).

$$P(C) = I + \frac{1}{2}C - \frac{1}{8}C^{2}$$

$$= I + \frac{1}{2}(A - I) - \frac{1}{8}(A - I)^{2}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{pmatrix} - \frac{1}{8}\begin{pmatrix} -6 & 6 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 5/4 & -1/4 & 1 \\ 1/4 & 3/4 & 1 \\ -3/2 & 3/2 & 1 \end{pmatrix}.$$

C8a) Le vecteur colonne de f(w) dans la base canonique est :

$$AW = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \text{ donc } f(w) = (2, 1, -2).$$

D'où v = (2, 1, -2) - (1, 0, 1) = (1, 1, -3).

Le vecteur colonne de f(v) dans la base canonique est :

$$AV = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -5 \\ -5 \\ -3 \end{pmatrix} \text{ donc } f(v) = (-5, -5, -3).$$

D'où $u = (-5, -5, -3) - (1, 1, -3) = (-6, -6, 0).$

C8b) Soit P la matrice de passage de la base \mathcal{B} à la famille \mathcal{B}' .

On a
$$P = \begin{pmatrix} -6 & 1 & 1 \\ -6 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix}$$
.

$$P \sim \begin{pmatrix} -6 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & -3 & 1 \end{pmatrix} \text{ par } L_2 \leftarrow L_1 - L_2.$$

$$\sim \begin{pmatrix} -6 & 1 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ par } L_2 \leftrightarrow L_3.$$

On obtient une matrice triangulaire donc les éléments diagonaux sont nonnuls donc P est inversible. Ainsi, \mathscr{B}' est une base de \mathbb{R}^3 .

 \checkmark On pouvait aussi faire cette question en résolvant le système provenant de au+bv+cw=0.

C8c) Le vecteur colonne de f(u) dans la base canonique est :

$$AU = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{pmatrix} \begin{pmatrix} -6 \\ -6 \\ 0 \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ 0 \end{pmatrix} \text{ donc } f(u) = (-6, -6, 0).$$

On a donc f(u) = u.

D'autre part, par construction, on a : u = f(v) - v donc f(v) = u + v et v = f(w) - w donc f(w) = v + w.

La matrice de f dans la base \mathscr{B}' est donc $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = T.$

C8d) La formule de changement de base pour l'endomorphisme f donne : $\mathcal{M}_{\mathcal{B}'}(f) = \left(P_{\mathcal{B},\mathcal{B}'}\right)^{-1} \mathcal{M}_{\mathcal{B}}(f) \left(P_{\mathcal{B},\mathcal{B}'}\right)$. Soit $T = P^{-1}AP$ où P est la matrice explicitée dans la question **A8b**).

C9a) Si $N^2 = T$, alors on a : $NT = NN^2 = N^3 = N^2N = TN$.

$$\begin{aligned} \operatorname{Posons} N &= \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}. \\ NT &= TN \Leftrightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \\ & \Leftrightarrow \begin{pmatrix} a+d & b+e & c+f \\ d+g & e+h & f+i \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & a+b & b+c \\ d & d+e & e+f \\ g & g+h & h+i \end{pmatrix} \\ & \Leftrightarrow \begin{pmatrix} a+d & = a \\ b+e & = a+b \\ c+f & = b+c \\ d+g & = d \\ e+h & = d+e \\ f+i & = e+f \\ h & = g+h \\ i & = h+i \end{pmatrix} \\ & \Leftrightarrow \begin{pmatrix} a+d & b+e & c+f \\ d+g & e+h & f+i \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & a+b & b+c \\ d & d+e & e+f \\ g & g+h & h+i \end{pmatrix} \\ & \Leftrightarrow \begin{pmatrix} d & = g=h=0 \\ e & = a \\ f & = b \\ i & = e \\ \end{aligned}$$

Donc N est bien de la forme $\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}.$

C9b) Soit N une matrice telle que $N^2=T$, alors N est de la forme $\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$.

Par ailleurs,
$$N^2 = T \Leftrightarrow \begin{pmatrix} a^2 & 2ab & b^2 + 2ac \\ 0 & a^2 & 2ab \\ 0 & 0 & a^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} a^2 & = 1 \\ 2ab & = 1 \\ b^2 + 2ac & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a = 1, b = \frac{1}{2}, c = -\frac{1}{8} \\ ou \\ a = -1, b = -\frac{1}{2}, c = \frac{1}{8} \end{cases}$$

Ainsi, les seules solutions possibles de l'équation $N^2 = T$ sont :

$$N_1 = \begin{pmatrix} 1 & 1/2 & -1/8 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } N_2 = \begin{pmatrix} -1 & -1/2 & 1/8 \\ 0 & -1 & -1/2 \\ 0 & 0 & -1 \end{pmatrix}.$$

On vérifie réciproquement par un calcul que $N_1^2=T$ et que $N_2^2=T$.

Ainsi, l'équation $N^2=T$ admet exactement N_1 et N_2 comme solutions.

C10) On a :
$$M^2 = A \Leftrightarrow M^2 = PTP^{-1}$$

 $\Leftrightarrow P^{-1}M^2P = T$
 $\Leftrightarrow (P^{-1}MP)^2 = T$
 $\Leftrightarrow P^{-1}MP = N_1 \text{ ou } P^{-1}MP = N_2$
 $\Leftrightarrow M = PN_1P^{-1} \text{ ou } M = PN_2P^{-1}.$

C11) La matrice nulle n'appartient pas à E car $O^2 \neq A$.

Donc E n'est pas un sous-espace vectoriel de $\mathcal{M}_3(\mathbf{R})$ donc pas un espace vectoriel.

Exercice 2 (ecricome 2017)

A1 On a $\lim_{x\to 0} \ln x = -\infty$ et $\lim_{x\to 0} x^{2a} = 0$ donc $\lim_{x\to 0} \varphi(x) = -\infty$.

Quand $x \to +\infty$, on a : $\ln x = o(x^{2a})$ donc $\varphi(x) \sim -ax^{2a}$. $\lim_{x \to +\infty} -ax^{2a} = -\infty \text{ car } a > 0 \text{ donc } \lim_{x \to +\infty} \varphi(x) = -\infty.$

A2 φ est dérivable sur $]0; +\infty[$ comme différence de fonctions dérivables et on a $\forall x>0: \varphi'(x)=\frac{1}{x}-2a^2x^{2a-1}=\frac{1-2a^2x^{2a}}{x}.$

$$\varphi'(x) \ge 0 \Leftrightarrow 1 - 2a^2 x^{2a} \ge 0$$

$$\Leftrightarrow x^{2a} \le \frac{1}{2a^2}$$

$$\Leftrightarrow x \le \left(\frac{1}{2a^2}\right)^{1/2a} \quad par \ croissance \ de \ x \mapsto x^{1/2a} \ sur \]0; +\infty[\ .$$

x	0		x_0		$+\infty$
$\varphi'(x)$		+		_	
			$\varphi(x_0)$		
$\varphi(x)$		7		\searrow	
	$-\infty$				$-\infty$

$$\checkmark \text{ On a } \varphi(x_0) = \frac{1}{2a}\ln\left(\frac{1}{2a^2}\right) - a\left(\frac{1}{2a^2}\right) = -\frac{1+\ln(2a^2)}{2a}.$$

A3) On a
$$\varphi(x_0) > 0 \Leftrightarrow 1 + \ln(2a^2) < 0$$

 $\Leftrightarrow \ln(2a^2) < -1$
 $\Leftrightarrow 2a^2 < e^{-1}$
 $\Leftrightarrow a^2 < \frac{1}{2e}$
 $\Leftrightarrow a < \sqrt{\frac{1}{2e}} \ car \ a > 0.$

Ainsi, si $a < \sqrt{\frac{1}{2e}}$, on a $\varphi(x_0) > 0$.

L'équation $\varphi(x)=0$ admet alors exactement deux solutions z_1 et z_2 grâce au tableau de variations de φ .

Pour la justification, on peut dire que φ étant continue et strictement croissante sur $]0; x_0[$, elle réalise une bijection de $]0; x_0[$ sur $]-\infty; \varphi(x_0)[$, intervalle qui contient 0 puisque $\varphi(x_0) > 0$.

Donc 0 admet un unique antécédent z_1 dans $]0; x_0[$. Ainsi, $z_1 < x_0$.

De la même façon, 0 admet un unique antécédent z_2 dans $]x_0; +\infty[$ et $z_2 > x_0$.

Si $a = \sqrt{\frac{1}{2e}}$, alors $\varphi(x_0) = 0$ et l'équation $\varphi(x) = 0$ admet comme unique solution x_0 .

Si $a > \sqrt{\frac{1}{2e}}$, on a $\varphi(x_0) < 0$. La fonction φ est donc strictement négative sur $]0; +\infty[$ et l'équation $\varphi(x)=0$ n'admet pas de solution.

B4 f est de classe C^2 sur U car elle est construite comme produit, différence et composée de fonctions de classe C^2 .

B5
$$\partial_1 f(x,y) = \frac{1}{x} \ln y - ay(xy)^{a-1}$$
 et $\partial_2 f(x,y) = \frac{1}{y} \ln x - ax(xy)^{a-1}$.

B6
$$(x,y)$$
 est un point critique de $f \Leftrightarrow \partial_1 f(x,y) = 0$ et $\partial_2 f(x,y) = 0$
 $\Leftrightarrow \ln y = a(xy)^a$ et $\ln x = a(xy)^a$
 $\Leftrightarrow \ln x = \ln y$ et $\ln x = a(xy)^a$
 $\Leftrightarrow x = y$ et $\ln x = a(x^2)^a$
 $\Leftrightarrow x = y$ et $\varphi(x) = 0$.

B7 Si $a < \sqrt{\frac{1}{2e}}$, on a vu que l'équation $\varphi(x) = 0$ admet deux solutions z_1 et z_2 . Ainsi, les points critiques de f sont (z_1, z_1) et (z_2, z_2) .

Si $a = \sqrt{\frac{1}{2e}}$, on a vu que l'équation $\varphi(x) = 0$ admet comme unique solution x_0 . Ainsi, f admet un seul point critique qui est (x_0, x_0) .

Si $a>\sqrt{\frac{1}{2e}}$, on a vu que l'équation $\varphi(x)=0$ n'admet pas de solution. Donc f n'admet pas de point critique.

$$\begin{aligned} \mathbf{C8} \ \partial_{1,1}^2 f(x,y) &= -\frac{1}{x^2} \ln y - ay \left[(a-1)y(xy)^{a-2} \right] = -\frac{1}{x^2} \ln y - a(a-1)y^2(xy)^{a-2} \\ \partial_{2,1}^2 f(x,y) &= \frac{1}{x} \frac{1}{y} - a \left[1(xy)^{a-1} + y(a-1)x(xy)^{a-2} \right] = \frac{1}{xy} - a^2(xy)^{a-1} . \\ \partial_{1,2}^2 f(x,y) &= \partial_{2,1}^2 f(x,y) \text{ par le th\'eor\`eme de Schwarz.} \\ \partial_{2,2}^2 f(x,y) &= -\frac{1}{y^2} \ln x - ax \left[(a-1)x(xy)^{a-2} \right] = -\frac{1}{y^2} \ln x - a(a-1)x^2(xy)^{a-2} . \end{aligned}$$

$$\mathbf{C9} \ \partial_{1,1}^2 f(z_1,z_1) = -\frac{1}{z_1^2} \ln z_1 - a(a-1) z_1^2 (z_1^2)^{a-2} = -\frac{1}{z_1^2} \ln z_1 - a(a-1) z_1^{2a-2}.$$

Or, on a $\varphi(z_1) = 0$, soit $\ln z_1 = a(z_1)^{2a}$, ce qui donne en remplaçant cidessus : $\partial_{1,1}^2 f(z_1, z_1) = -a^2 z_1^{2a-2}$.

Un calcul analogue donne $\partial_{2,2}^2 f(z_1,z_1) = -a^2 z_1^{2a-2}$.

Enfin,
$$\partial_{2,1}^2 f(z_1, z_1) = \partial_{1,2}^2 f(z_1, z_1) = \frac{1}{z_1^2} - a^2 (z_1^2)^{a-1} = \frac{1}{z_1^2} - a^2 z_1^{2a-2}$$
.

$$\begin{aligned} \text{On d\'eduit} : \nabla^2 f(z_1, z_1) &= \left(\begin{array}{ccc} \partial_{1,1}^2 f(z_1, z_1) & \partial_{1,2}^2 f(z_1, z_1) \\ \partial_{2,1}^2 f(z_1, z_1) & \partial_{2,2}^2 f(z_1, z_1) \end{array} \right) \\ &= \left(\begin{array}{ccc} -a^2 z_1^{2a-2} & \frac{1}{z_1^2} - a^2 z_1^{2a-2} \\ \frac{1}{z_1^2} - a^2 z_1^{2a-2} & -a^2 z_1^{2a-2} \end{array} \right). \end{aligned}$$

C10 On trouve
$$MX_1 = \begin{pmatrix} \frac{1}{z_1^2} - 2a^2 z_1^{2a-2} \\ \frac{1}{z_1^2} - 2a^2 z_1^{2a-2} \end{pmatrix} = \left[\frac{1}{z_1^2} - 2a^2 z_1^{2a-2} \right] X_1.$$

Cela prouve que $\frac{1}{z_1^2} - 2a^2 z_1^{2a-2}$ est une valeur propre de M.

On a aussi
$$MX_2 = \begin{pmatrix} \frac{1}{z_1^2} \\ -\frac{1}{z_1^2} \end{pmatrix} = -\frac{1}{z_1^2}X_1.$$

Cela prouve que $-\frac{1}{z_1^2}$ est une valeur propre de M.

C11 On a
$$\frac{1}{z_1^2} - 2a^2 z_1^{2a-2} = \frac{1 - 2a^2 z_1^{2a}}{z_1^2}$$
.
Or, $z_1 < x_0$ donne $z_1 < \left(\frac{1}{2a^2}\right)^{1/2a}$, soit $z_1^{2a} < \frac{1}{2a^2}$.
Ainsi, $\frac{1}{z_1^2} - 2a^2 z_1^{2a-2} > 0$.

En conclusion, M possède deux valeurs propres de signes contraires. f ne possède donc pas d'extrémum en (z_1, z_1) .

C12 On a de même
$$\nabla^2 f(z_2, z_2) = \begin{pmatrix} -a^2 z_2^{2a-2} & \frac{1}{z_2^2} - a^2 z_2^{2a-2} \\ \frac{1}{z_2^2} - a^2 z_2^{2a-2} & -a^2 z_2^{2a-2} \end{pmatrix}$$
.

Notons N cette matrice. En introduisant les mêmes vecteurs que dans la question **C10**, on trouve que $\frac{1}{z_2^2} - 2a^2z_2^{2a-2}$ et $-\frac{1}{z_2^2}$ sont les valeurs propres de N.

La contrainte $x_0 < z_2$ donne cette fois-ci : $\frac{1}{z_2^2} - 2a^2z_2^{2a-2} < 0$.

N possède alors deux valeurs propres strictement négatives. f possède donc en (z_2, z_2) un maximum local.

Exercice 3 (ecricome 2017)

A1 A chaque tirage, du fait de la remise, chacun des n numéros a la probabilité $\frac{1}{n}$ de sortir.

On a donc
$$\forall k \in \mathbb{N}^*, \forall i \in [1; n] : P(X_k = i) = \frac{1}{n}$$
.
Ainsi, $X_k \hookrightarrow \mathscr{U}([1; n])$.
On déduit $E(X_k) = \frac{n+1}{2}$.

A2a) T_n prend des valeurs entières.

Si la première boule tirée est la boule numérotée n, alors on a $T_n = 1$.

Si on tire n fois la boule numérotée 1, alors on a $T_n = n$.

Dans tous les autres cas, on a $2 \le T_n \le n-1$. Donc $T_n(\Omega) \subset [1; n]$.

Réciproquement, toute valeur $i \in [2; n-1]$ peut être obtenue par T_n (par exemple, si on tire i-1 fois la boule numérotée 1, puis la boule numérotée n au i-ème tirage, T_n vaut i). Donc $T_n(\Omega) = [1; n]$.

A2b) L'événement $(T_n = 1)$ se réalise si et seulement si on tire la boule numérotée n au premier tirage.

Donc
$$P(T_n = 1) = P(X_1 = n) = \frac{1}{n}$$
.

A2c) L'événement $(T_n = n)$ se réalise si et seulement si on tire la boule numérotée 1 aux n-1 premiers tirages (le n-ième tirage peut faire n'importe quoi, on est sûr que la somme dépassera n).

Donc
$$P(T_n = n) = P((X_1 = 1) \cap ... \cap (X_{n-1} = 1))$$

 $= P(X_1 = 1)...P(X_{n-1} = 1) \text{ par indépendance des tirages}$
 $= \frac{1}{n}...\frac{1}{n}$
 $= \left(\frac{1}{n}\right)^{n-1}$.

A3 On a
$$T_2(\Omega) = [1; 2]$$
. $P(T_2 = 1) = \frac{1}{2}$ et $P(T_2 = 2) = \frac{1}{2}$.

A4 On a
$$T_3(\Omega) = [1; 3]$$
.

$$P(T_3 = 1) = \frac{1}{3} \text{ et } P(T_3 = 3) = \left(\frac{1}{3}\right)^{3-1} = \frac{1}{9}.$$

On déduit :
$$P(T_3 = 2) = 1 - P(T_3 = 1) - P(T_3 = 3) = \frac{5}{9}$$
.
On a $E(T_3) = 1P(T_3 = 1) + 2P(T_3 = 2) + 3P(T_3 = 3) = \frac{1}{3} + \frac{10}{9} + \frac{3}{9} = \frac{16}{9}$.

B5 La plus petite valeur prise par S_k est k (si les k premiers tirages amènent la boule numérotée 1).

La plus grande valeur prise par S_k est nk (si les k premiers tirages amènent la boule numérotée n).

Donc
$$S_k(\Omega) \subset [k; nk]$$
, puis $S_k(\Omega) = [k; nk]$.

B6a)
$$S_{k+1} = \sum_{i=1}^{k+1} X_i = \sum_{i=1}^k X_i + X_{k+1}$$
. Donc $S_{k+1} = S_k + X_{k+1}$.

B6b) Comme $S_k(\Omega) = [k; nk]$, la famille d'événements $(S_k = j)_{k \le j \le nk}$ forme un système complet.

La formule des probabilités totales donne alors pour tout $i \in [k+1; n]$:

$$P(S_{k+1} = i) = \sum_{j=k}^{kn} P_{(S_k = j)}(S_{k+1} = i)P(S_k = j)$$

$$= \sum_{j=k}^{kn} P_{(S_k = j)}(S_k + X_{k+1} = i)P(S_k = j)$$

$$= \sum_{j=k}^{kn} P_{(S_k = j)}(X_{k+1} = i - j)P(S_k = j)$$

$$= \sum_{j=k}^{kn} P(X_{k+1} = i - j)P(S_k = j) \ car \ S_k \ et \ X_{k+1} \ indépendantes.$$

Comme $X_{k+1}(\Omega) = [1; n]$, on peut dans la somme se limiter aux indices j tels que $1 \le i - j \le n$, c'est-à-dire $i - n \le j \le i - 1$.

On a ainsi
$$P(S_{k+1} = i) = \sum_{j=max(k,i-n)}^{min(kn,i-1)} P(X_{k+1} = i - j)P(S_k = j)$$

$$= \sum_{j=max(k,i-n)}^{min(kn,i-1)} \frac{1}{n}P(S_k = j)$$

$$= \frac{1}{n}\sum_{j=k}^{i-1} P(S_k = j).$$

B7a) La formule de Pascal donne : $\begin{pmatrix} j-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} j-1 \\ k \end{pmatrix} = \begin{pmatrix} j \\ k \end{pmatrix}$.

B7b) On déduit pour tout entier i > k + 1:

$$\begin{split} \sum_{j=k}^{i-1} \left(\begin{array}{c} j-1 \\ k-1 \end{array} \right) &= \sum_{j=k}^{i-1} \left[\left(\begin{array}{c} j \\ k \end{array} \right) - \left(\begin{array}{c} j-1 \\ k \end{array} \right) \right] \\ &= \left(\begin{array}{c} i-1 \\ k \end{array} \right) - \left(\begin{array}{c} k-1 \\ k \end{array} \right) \ par \ t\'elescopage \\ &= \left(\begin{array}{c} i-1 \\ k \end{array} \right) \ car \ \left(\begin{array}{c} k-1 \\ k \end{array} \right) = 0. \end{split}$$

B7c) Pour tout $k \in [1; n]$, soit \mathcal{H}_k la proposition :

$$\ll \forall i \in \llbracket k; n \rrbracket : P(S_k = i) = \frac{1}{n^k} \begin{pmatrix} i-1 \\ k-1 \end{pmatrix} \gg.$$

•
$$\mathcal{H}_1$$
 s'écrit : $\ll \forall i \in \llbracket 1; n \rrbracket : P(S_1 = i) = \frac{1}{n} \begin{pmatrix} i-1 \\ 0 \end{pmatrix} \gg$.

Soit $\ll \forall i \in [1; n]: P(S_1 = i) = \frac{1}{n} \gg \text{vrai puisque } S_1 = X_1 \hookrightarrow \mathscr{U}([1; n]).$

• Soit $k \in [1; n-1]$ un entier quelconque. Supposons \mathcal{H}_k vraie. Soit $i \in [k+1; n]$.

On a
$$P(S_{k+1} = i) = \frac{1}{n} \sum_{j=k}^{i-1} P(S_k = j)$$
 question B6b)

$$= \frac{1}{n} \sum_{j=k}^{i-1} \frac{1}{n^k} \begin{pmatrix} j-1 \\ k-1 \end{pmatrix} par HR$$

$$= \frac{1}{n^{k+1}} \sum_{j=k}^{i-1} \begin{pmatrix} j-1 \\ k-1 \end{pmatrix}$$

$$= \frac{1}{n^{k+1}} \sum_{j=k}^{i-1} \begin{pmatrix} i-1 \\ k \end{pmatrix} question B7b).$$

Donc \mathcal{H}_{k+1} est vraie.

• On conclut que \mathcal{H}_k est vraie pour tout $k \in [1; n]$.

B8a) L'événement $(T_n > k)$ est réalisé s'il faut plus de k tirages pour que la somme des numéros soit supérieure ou égale à n, ce qui se produit si après k tirages, la somme des numéros est inférieure ou égale à n-1, c'est-à-dire si l'événement $(S_k \le n-1)$ est réalisé. Ainsi, $(T_n > k) = (S_k \le n-1)$.

B8b) Soit
$$k \in [1; n-1]$$
 un entier quelconque.

$$P(T_n > k) = P(S_k \le n - 1)$$

$$= \sum_{j=k}^{n-1} P(S_k = j)$$

$$= \sum_{j=k}^{n-1} \frac{1}{n^k} \begin{pmatrix} j-1\\ k-1 \end{pmatrix} \text{ question } B7c)$$

$$= \frac{1}{n^k} \sum_{j=k}^{n-1} \begin{pmatrix} j-1\\ k-1 \end{pmatrix}$$

$$= \frac{1}{n^k} \begin{pmatrix} n-1\\ k \end{pmatrix} \text{ question } B7b) \text{ avec } i = n$$

B9 Rappelons que
$$T_n(\Omega) = [1; n]$$
. On a donc $E(T_n) = \sum_{k=1}^n k P(T_n = k)$

On a également pour tout $k \in [1;n]$, $(T_n > k - 1)$ comme la réunion des événements incompatibles $(T_n = k)$ et $(T_n > k)$, ce qui entraı̂ne que $P(T_n > k - 1) = P(T_n = k) + P(T_n > k)$, soit : $P(T_n = k) = P(T_n > k - 1) - P(T_n > k)$.

On déduit que $E(T_n)$

$$= \sum_{k=1}^{n} k[P(T_n > k - 1) - P(T_n > k)]$$

$$= \sum_{k=1}^{n} [kP(T_n > k - 1) - kP(T_n > k)]$$

$$= \sum_{k=1}^{n} [kP(T_n > k - 1) - (k + 1)P(T_n > k) + P(T_n > k)]$$

$$= \sum_{k=1}^{n} [kP(T_n > k - 1) - (k + 1)P(T_n > k)] + \sum_{k=1}^{n} P(T_n > k)$$

$$= 1P(T_n > 0) - (n + 1)P(T_n > n) + \sum_{k=1}^{n} P(T_n > k) \text{ par télescopage}$$

$$= P(T_n > 0) - (n + 1)P(T_n > n) + \sum_{k=1}^{n-1} P(T_n > k) + P(T_n > n)$$
Enfin, $P(T_n > 0) + \sum_{k=1}^{n-1} P(T_n > k) = \sum_{k=0}^{n-1} P(T_n > k) \text{ par recollement et}$

$$P(T_n > n) = 0 \text{ puisque } T_n(\Omega) = [1; n].$$
On conclut que $E(T_n) = \sum_{k=0}^{n-1} P(T_n > k).$

 \checkmark Cette formule, appelée formule d'anti-répartition est très classique et vraie pour n'importe quelle variable aléatoire discrète prenant ses valeurs dans $\llbracket 1;n \rrbracket$.

En utilisant la question B8b), on déduit :

$$E(T_n) = \sum_{k=0}^{n-1} \frac{1}{n^k} \binom{n-1}{k}$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k} 1^{n-1-k} \left(\frac{1}{n}\right)^k$$

$$= \left(1 + \frac{1}{n}\right)^{n-1} par la formule du binome.$$

B10 On a
$$\lim_{n \to +\infty} E(T_n) = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{n-1} = \lim_{n \to +\infty} e^{(n-1)\ln\left(1 + \frac{1}{n}\right)}.$$
 Or, $\ln(1+x) \sim x$ et $\lim_{n \to +\infty} \frac{1}{n} = 0$ donc $\ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{n}.$ Donc $(n-1)\ln\left(1 + \frac{1}{n}\right) \sim \frac{n-1}{n} \sim 1.$ Ainsi, $\lim_{n \to +\infty} (n-1)\ln\left(1 + \frac{1}{n}\right) = 1$ puis $\lim_{n \to +\infty} E(T_n) = e.$

C11a) On a
$$\sum_{k=1}^{+\infty} P(Y = k)$$

$$= \sum_{k=1}^{+\infty} \frac{k-1}{k!}$$

$$= \sum_{k=1}^{+\infty} \left(\frac{k}{k!} - \frac{1}{k!}\right)$$

$$= \sum_{k=1}^{+\infty} \left(\frac{1}{(k-1)!} - \frac{1}{k!}\right)$$

$$= \lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{1}{(k-1)!} - \frac{1}{k!}\right)$$

$$= \lim_{n \to +\infty} \left(\frac{1}{0!} - \frac{1}{n!}\right) \text{ par télescopage}$$

$$= 1.$$

C11b) On a
$$\sum_{k=1}^{n} |kP(Y=k)|$$

$$= \sum_{k=1}^{n} k \frac{k-1}{k!}$$

$$= \sum_{k=1}^{n} \frac{k-1}{(k-1)!}$$

$$= \sum_{k=2}^{n} \frac{k-1}{(k-1)!}$$
 puisque le 1er terme de la somme est nul
$$= \sum_{k=2}^{n} \frac{1}{(k-2)!}$$

$$= \sum_{j=0}^{n-2} \frac{1}{j!}$$

On reconnaît la somme partielle d'une série convergente car exponentielle (de paramètre 1). Donc Y admet une espérance.

$$E(Y) = \sum_{k=1}^{+\infty} kP(Y = k)$$

$$= \lim_{n \to +\infty} \sum_{k=1}^{n} kP(Y = k)$$

$$= \lim_{n \to +\infty} \sum_{j=0}^{n-2} \frac{1}{j!}$$

$$= \sum_{j=0}^{+\infty} \frac{1}{j!}$$

$$= e.$$

C12 Soit $k \ge 1$ un entier. En prenant n suffisamment grand, on a $k \le n-1$, ce qui permet d'appliquer la formule $P(T_n > k) = \frac{1}{n^k} \binom{n-1}{k}$ trouvée en B8b).

On a alors,
$$\lim_{n \to +\infty} P(T_n > k)$$

$$= \lim_{n \to +\infty} \frac{1}{n^k} \binom{n-1}{k}$$

$$= \lim_{n \to +\infty} \frac{1}{n^k} \frac{(n-1)!}{(n-1-k)!k!}$$

$$= \lim_{n \to +\infty} \frac{1}{k!} \frac{(n-1)(n-2)...(n-k)}{n^k}$$

Or, chacun des k facteurs du numérateur est équivalent à n en $+\infty$. Donc $(n-1)(n-2)...(n-k) \underset{+\infty}{\sim} n^k$.

On conclut que $\lim_{n\to+\infty} P(T_n > k) = \frac{1}{k!}$.

C13 Pour tout entier $k \geq 1$, on a:

$$\lim_{n \to +\infty} P(T_n = k)$$

$$= \lim_{n \to +\infty} [P(T_n > k - 1) - P(T_n > k)]$$

$$= \frac{1}{(k-1)!} - \frac{1}{k!} \text{ d'après C12}$$

$$= \frac{k-1}{k!}$$

$$= P(Y = k).$$
Si $k \le 0$, on a $\lim_{n \to +\infty} P(T_n = k) = \lim_{n \to +\infty} 0 = 0 = P(Y = k).$

Finalement, pour tout entier $k \in \mathbf{Z}$, on a : $\lim_{n \to +\infty} P(T_n = k) = P(Y = k)$. Les variables aléatoires $(T_n)_{n \ge 1}$ et Y étant discrètes, cela prouve que $(T_n)_{n \ge 1}$ converge en loi vers Y.

C14

```
import numpy.random as rd
def T(n):
    S=0
    y=0
    while S<n:
        tirage=rd.randint(1,n)
        print(tirage)
        S=S+tirage
        y=y+1
    return y</pre>
```

C15a) La fonction freqT renvoie un vecteur ligne de n colonnes, où la kième coordonnée représente la fréquence d'apparition de l'événement $(T_n = k)$ lors de la réalisation de 100000 expériences aléatoires, c'est-à-dire la valeur approximative de $P(T_n = k)$ (on sait en effet d'après la loi des grands nombres qu'en effectuant un grand nombre d'expériences aléatoires, la probabilité théorique d'un événement lié à chacune des expériences aléatoires est très proche de sa fréquence statistique).

Ce vecteur est représenté par un diagramme en bâtons, la hauteur du kième baton étant égale à la k-ième coordonnée de ce vecteur.

La fonction loitheoY renvoie un vecteur ligne de n colonnes, où la k-ième coordonnée vaut $\frac{k-1}{k!}$, c'est-à-dire P(Y=k).

Ce vecteur est représenté par des croix, la hauteur de la k-ième croix étant égale à la k-ième coordonnée de ce vecteur, le graphique se limitant aux entiers $k \in \{1, ..., 6\}$.

```
C15b) Les graphiques illustrent que quand n est grand et k \in \{1, ..., 5\}: P(T_n = k) \approx P(Y = k), soit \lim_{n \to +\infty} P(T_n = k) = P(Y = k). On retrouve donc le résultat de la question C13.
```