Chapitre 3 : matrice d'une application linéaire

Dans tout le chapitre, E et F sont des espaces vectoriels de dimension finie.

I)Matrice d'une application linéaire

Propriété 1

Soit E un espace vectoriel de base $(\overrightarrow{e_1},...,\overrightarrow{e_n})$.

Toute application linéaire $f: E \to F$ est uniquement déterminée par la donnée des vecteurs $f(\overrightarrow{e_1}), ..., f(\overrightarrow{e_n})$.

Déf : soient E et F deux espaces vectoriels de bases respectives $\mathscr{B} = (\overrightarrow{e_1}, ..., \overrightarrow{e_n})$ et $\mathscr{C} = (\overrightarrow{e_1}, ..., \overrightarrow{e_p})$.

Soit $f: E \to F$ une application linéaire.

On appelle matrice de f dans les bases \mathscr{B} et \mathscr{C} , notée $\mathscr{M}_{\mathscr{B},\mathscr{C}}(f)$, la matrice de $\mathscr{M}_{p,n}(\mathbf{R})$ dont la j-ième colonne est formée des coordonnées du vecteur $f(\overrightarrow{e_j})$ dans la base \mathscr{C} .

Remarque

 $\mathcal{M}_{\mathcal{B},\mathcal{C}}(f)$ est la matrice de passage de \mathcal{C} à la famille $\mathcal{D} = (f(\overrightarrow{e_1}),...,f(\overrightarrow{e_n})).$

Exercice 1

Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 qui à tout couple (x,y) associe :

$$f(x,y) = (-x + y, 2x - 3y, 4x).$$

On note $\mathscr{B} = (\overrightarrow{e_1}, \overrightarrow{e_2})$ et $\mathscr{C} = (\overrightarrow{\epsilon_1}, \overrightarrow{\epsilon_2}, \overrightarrow{\epsilon_3})$ les bases canoniques de \mathbf{R}^2 et \mathbf{R}^3 .

Déterminer la matrice de f dans les bases \mathscr{B} et \mathscr{C} .

Exercice 2

On note $\mathscr{B} = (\overrightarrow{e_1}, \overrightarrow{e_2})$ et $\mathscr{C} = (\overrightarrow{\epsilon_1}, \overrightarrow{\epsilon_2}, \overrightarrow{\epsilon_3})$ les bases canoniques de \mathbf{R}^2 et \mathbf{R}^3 .

Soit f l'application linéaire de ${\bf R}^2$ dans ${\bf R}^3$ dont la matrice dans les bases ${\mathcal B}$ et ${\mathcal C}$

est
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ 2 & 4 \end{pmatrix}$$
. Déterminer une famille génératrice de Imf .

Théorème 1 (calcul matriciel de f(u) et de Kerf)

Soient E et F deux espaces vectoriels de bases respectives \mathscr{B} et \mathscr{C} .

Soit f une application linéaire de E dans F. Soit $A = \mathcal{M}_{\mathcal{B},\mathcal{C}}(f)$.

Soit \overrightarrow{u} un vecteur quelconque de E de vecteur colonne U dans la base \mathscr{B} .

1)Le vecteur colonne de $f(\overrightarrow{u})$ dans la base \mathscr{C} est AU.

2) En particulier, $\overrightarrow{u} \in Kerf \iff AU = O$.

Exercice 3

Soient $E = \mathbf{R}^3$ et $F = \mathbf{R}^2$, munis de leur base canonique $\mathscr{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ et $\mathscr{C} = (\overrightarrow{e_1}, \overrightarrow{e_2})$.

Soit $f:E\to F$ l'application linéaire dont la matrice dans les bases ${\mathscr B}$ et ${\mathscr C}$ est :

$$A = \left(\begin{array}{ccc} 2 & -1 & 1 \\ 3 & 0 & 4 \end{array}\right).$$

Soit $\overrightarrow{u} = (2, 3, -1)$. Calculer $f(\overrightarrow{u})$ de deux façons différentes.

II)Matrice d'un endomorphisme

Pour un endomorphisme f de E, c'est-à-dire une application linéaire de E dans E, on prend $\mathscr{C} = \mathscr{B}$, ce qui donne la définition suivante :

Déf : soit E un espace vectoriel de base $\mathscr{B} = (\overrightarrow{e_1}, ..., \overrightarrow{e_n})$.

Soit f un endomorphisme de E.

On appelle matrice de f dans la base \mathscr{B} , notée $\mathscr{M}_{\mathscr{B}}(f)$, la matrice de $\mathscr{M}_{n}(\mathbf{R})$ dont la j-ième colonne est formée des coordonnées du vecteur $f(\overrightarrow{e_{i}})$ dans la base \mathscr{B} .

Exercice 4

Soit f l'endomorphisme de \mathbb{R}^3 qui à tout triplet (x, y, z) associe :

$$f(x, y, z) = (4x + 2y, -3x + y, 5x - 7z).$$

Déterminer la matrice de f dans la base canonique \mathscr{B} de \mathbf{R}^3 .

Exercice 5

Soit f l'endomorphisme de $\mathbf{R}_2[X]$ défini pour tout $P \in \mathbf{R}_2[X]$ par :

$$f(P) = (X - 1)P' + 3P.$$

Déterminer la matrice de f dans la base \mathcal{B} , base canonique de $\mathbf{R}_2[X]$.

Propriété 2

Soit E un espace vectoriel de base $\mathscr{B} = (\overrightarrow{e_1}, ..., \overrightarrow{e_n})$. Alors, $\mathscr{M}_{\mathscr{B}}(id_E) = I_n$.

III)Opérations

Dans tout le paragraphe, E, F et G sont des espaces vectoriels de dimension finie. On note $\mathcal{L}(E,F)$ l'espace vectoriel des applications linéaires de E dans F.

Propriété 3

Soient ${\mathscr B}$ une base de E et ${\mathscr C}$ une base de F .

L'application de $\mathcal{L}(E,F)$ dans $\mathcal{M}_{p,n}(\mathbf{R})$ qui à f associe $\mathcal{M}_{\mathcal{B},\mathcal{C}}(f)$ est un isomorphisme.

Remarque

La linéarité de l'application se traduit par : $\mathcal{M}_{\mathscr{B}}(\lambda f + g) = \lambda \mathcal{M}_{\mathscr{B}}(f) + \mathcal{M}_{\mathscr{B}}(g)$.

Propriété 4

Soient E, F, G des espaces vectoriels de bases respectives $\mathscr{B}, \mathscr{C}, \mathscr{D}$.

Pour toutes applications linéaires $f: E \to F$ et $g: F \to G$, on a :

$$\mathcal{M}_{\mathcal{B},\mathcal{D}}(gof) = \mathcal{M}_{\mathcal{C},\mathcal{D}}(g)\mathcal{M}_{\mathcal{B},\mathcal{C}}(f).$$

Propriété 5

Soit E un espace vectoriel de base \mathscr{B} .

Pour tout endomorphisme f de E et tout entier $k \geq 0$, on a :

$$\mathscr{M}_{\mathscr{B}}(f^k) = (\mathscr{M}_{\mathscr{B}}(f))^k$$
.

Exercice 6

Soit E un espace vectoriel de dimension 2 et \mathscr{B} une base de E.

Soit f l'endomorphisme de E dont la matrice dans la base \mathscr{B} est : $A = \begin{pmatrix} -1 & 4 \\ 2 & 0 \end{pmatrix}$.

Déterminer la matrice de $g = f^3 - 2f - 5id_E$ dans la base \mathscr{B} .

Théorème 2

Soient E et F des espaces vectoriels de **même dimension**, de bases \mathscr{B} et \mathscr{C} .

Soit $f: E \to F$ une application linéaire.

f est bijective $\iff \mathcal{M}_{\mathcal{B},\mathcal{C}}(f)$ est inversible.

Et alors
$$\mathscr{M}_{\mathscr{C},\mathscr{B}}(f^{-1}) = (\mathscr{M}_{\mathscr{B},\mathscr{C}}(f))^{-1}$$
.

Exercice 7 - ecricome 2000

Soit f l'application de $\mathbf{R}_3[X]$ dans $\mathbf{R}[X]$ qui à tout polynôme P de $\mathbf{R}_3[X]$ associe le polynôme f(P) défini par :

$$f(P)(X) = P(X+1) + P(X).$$

- 1)Montrer que f est un endomorphisme de $\mathbf{R}_3[X]$.
- 2)Déterminer la matrice de f dans la base canonique \mathscr{B} de $\mathbf{R}_3[X]$.
- 3) Justifier que f est bijectif et préciser la matrice de f^{-1} dans la base \mathscr{B} .

Théorème 3

Soient E et F des espaces vectoriels de bases \mathscr{B} et \mathscr{C} .

Soit $f: E \to F$ une application linéaire.

Alors,
$$rg(f) = rg(\mathcal{M}_{\mathcal{B},\mathcal{C}}(f)).$$

IV)Changement de base

Théorème 4 (formule de changement de base pour les endomorphismes)

Soit E un espace vectoriel. Soient \mathscr{B} et \mathscr{B}' deux bases de E.

Soit f un endomorphisme de E.

On a alors la formule:

$$A' = P^{-1}AP$$
 où $A = \mathscr{M}_{\mathscr{B}}(f), A' = \mathscr{M}_{\mathscr{B}'}(f)$ et $P = P_{\mathscr{B},\mathscr{B}'}$.

Déf : deux matrices A et A' de $\mathcal{M}_n(\mathbf{R})$ sont dites semblables s'il existe une matrice $P \in \mathcal{M}_n(\mathbf{R})$ inversible telle que $A' = P^{-1}AP$ ou $A' = PAP^{-1}$.

Remarque

Le théorème 4 montre que les matrices d'un même endomorphisme sont toutes semblables entre elles.

Soit $\mathscr{B}=(\overrightarrow{e_1},\overrightarrow{e_2})$ la base canonique de \mathbf{R}^2 et $\mathscr{B}'=(\overrightarrow{e_1},\overrightarrow{e_2})$ la famille de vecteurs de \mathbf{R}^2 définie par $\overrightarrow{e_1}=(1,2)$ et $\overrightarrow{e_2}=(2,-1)$. Soit f l'endomorphisme de \mathbf{R}^2 défini par :

$$f(x,y) = (x - y, x + y).$$

- 1)Déterminer la matrice de passage P de \mathscr{B} à \mathscr{B}' .
- 2) Montrer que P est inversible et déterminer son inverse.
- 3) Déterminer la matrice A de f dans la base \mathscr{B} .
- 4)En déduire la matrice A' de f dans la base \mathscr{B}' .

$$\overline{1)P = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}} 2)P^{-1} = \begin{pmatrix} 1/5 & 2/5 \\ 2/5 & -1/5 \end{pmatrix} 3)A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} 4)A' = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$