Chapitre 6 : compléments sur les suites

I)Suites récurrentes du type $U_{n+1} = f(U_n)$

Déf : soit f une fonction. Une suite récurrente du type $U_{n+1} = f(U_n)$ est une suite dont le premier terme U_0 est connu et définie par l'égalité $\forall n \in \mathbb{N}, U_{n+1} = f(U_n)$.

$$U_0 \xrightarrow{f} U_1 \xrightarrow{f} \dots \xrightarrow{f} U_n \xrightarrow{f} U_{n+1} \xrightarrow{f} \dots$$

Remarque

Avec ce type de suite, on ne sait pas calculer U_n en fonction de n (sauf si f est affine car c'est alors une suite arithmético-géométrique).

Déf : on appelle point fixe de f, tout nombre réel solution de l'équation f(x) = x.

Théorème 1 (théorème du point fixe)

Soit $(U_n)_{n \in \mathbb{N}}$ une suite définie par $\forall n \in \mathbb{N}, \ U_{n+1} = f(U_n)$.

Si $(U_n)_{n\in\mathbb{N}}$ converge vers l et si f est continue en l, alors l est un point fixe de f.

Remarque

Ce théorème ne permet pas de prouver que la suite converge.

Exercice 1

Soit $(U_n)_{n \in \mathbb{N}}$ la suite définie par $U_0 = 0$ et $\forall n \in \mathbb{N}, \ U_{n+1} = \sqrt{2 + U_n}$.

- 1) Etudier les variations de $f: x \mapsto \sqrt{2+x}$ sur $[-2, +\infty[$.
- 2)Montrer par récurrence que $\forall n \in \mathbb{N}, \ U_n$ existe et $0 \le U_n \le 2$.
- 3)Montrer par récurrence que $\forall n \in \mathbb{N}, \ U_{n+1} \geq U_n$.
- 4)Montrer que la suite $(U_n)_{n \in \mathbb{N}}$ est convergente, puis déterminer $\lim_{n \to +\infty} U_n$.
- 5)Tracer \mathscr{C}_f puis représenter les termes U_0, U_1, U_2 .

II)Suites équivalentes

Déf : on dit que les suites $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ sont équivalentes (en $+\infty$)

$$\text{si} \lim_{n \to +\infty} \frac{U_n}{V_n} = 1 \text{ ou si} \lim_{n \to +\infty} \frac{V_n}{U_n} = 1. \text{ On note alors} : U_n \underset{+\infty}{\sim} V_n \text{ ou } V_n \underset{+\infty}{\sim} U_n.$$

Remarque

Deux suites $(U_n)_{n \in \mathbb{N}}$ et $(V_n)_{n \in \mathbb{N}}$ sont équivalentes s'il existe une suite $(\alpha_n)_{n \in \mathbb{N}}$ convergeant vers 1 et $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0, \ U_n = \alpha_n V_n$.

Propriété 1

Si
$$U_n \sim V_n$$
, alors $\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} V_n$.

Remarque

Réciproque fausse : exemple $U_n = n$ et $V_n = n^2$.

Propriété 2

Soit l un réel non-nul. Alors, $U_n \underset{+\infty}{\sim} l \iff \lim_{n \to +\infty} U_n = l$.

Propriété 3

Toute suite polynômiale est équivalente en $+\infty$ à son monôme de plus haut degré.

Propriété 4 (opérations sur les équivalents)

Soient $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$, $(d_n)_{n\in\mathbb{N}}$ des suites et soit α un réel.

1)Si
$$a_n \underset{+\infty}{\sim} b_n$$
 et si $c_n \underset{+\infty}{\sim} d_n$, alors on a : $a_n c_n \underset{+\infty}{\sim} b_n d_n$ et $\frac{a_n}{c_n} \underset{+\infty}{\sim} \frac{b_n}{d_n}$.

2)Si
$$a_n \underset{+\infty}{\sim} b_n$$
, alors on a : $(a_n)^{\alpha} \underset{+\infty}{\sim} (b_n)^{\alpha}$.

On n'a pas le droit de faire une somme, une différence d'équivalents ou d'appliquer une fonction de part et d'autre d'un équivalent (sauf si c'est la fonction puissance).

Exercice 2

Déterminer un équivalent simple de $U_n = \frac{(2n^3 - n + 1)^4}{(-3n^4 + n^2 - 1)^5}$. En déduire $\lim_{n \to +\infty} U_n$.

Déterminer
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$$
.

III)Suite négligeable devant une autre

Déf : on dit que la suite $(U_n)_{n\in\mathbb{N}}$ est négligeable devant la suite $(V_n)_{n\in\mathbb{N}}$ (en $+\infty$) si $\lim_{n \to +\infty} \frac{U_n}{V_n} = 0$. On note alors : $U_n = o(V_n)$.

 $(U_n)_{n\in\mathbb{N}}$ est négligeable devant $(V_n)_{n\in\mathbb{N}}$ s'il existe une suite $(\epsilon_n)_{n\in\mathbb{N}}$ convergeant vers 0 et $n_0 \in \mathbf{N}$ tels que $\forall n \geq n_0, \ U_n = \epsilon_n V_n$.

Propriété 5

$$U_n = o(1) \iff \lim_{n \to +\infty} U_n = 0.$$

Si
$$V_n = o(U_n)$$
, alors $U_n + V_n \sim U_n$.

Théorème 2 (rappel fondamental)

1)Si
$$-1 < q < 1$$
, alors $\lim_{n \to +\infty} q^n = 0$.

2)Si
$$q > 1$$
, alors $\lim_{n \to +\infty} q^n = +\infty$

2)Si
$$q > 1$$
, alors $\lim_{n \to +\infty} q^n = +\infty$.
3)Si $q < -1$, alors $\lim_{n \to +\infty} q^n$ n'existe pas.

Théorème 3 (croissances comparées)

Quels que soit les réels $\alpha > 0, \beta > 0$ et $\gamma > 0$, quelque soit le réel q, on a :

$$1)\lim_{n\to+\infty}\frac{(\ln n)^\beta}{n^\alpha}=0 \text{ ou encore }\lim_{n\to+\infty}\frac{n^\alpha}{(\ln n)^\beta}=+\infty.$$

$$1) \lim_{n \to +\infty} \frac{(\ln n)^{\beta}}{n^{\alpha}} = 0 \text{ ou encore } \lim_{n \to +\infty} \frac{n^{\alpha}}{(\ln n)^{\beta}} = +\infty.$$

$$2) \text{Pour tout } q > 1 : \lim_{n \to +\infty} \frac{n^{\alpha}}{q^{n}} = 0 \text{ ou encore } \lim_{n \to +\infty} \frac{q^{n}}{n^{\alpha}} = +\infty.$$

3)
$$\lim_{n \to +\infty} \frac{n^{\alpha}}{e^{\gamma n}} = 0$$
 ou encore $\lim_{n \to +\infty} \frac{e^{\gamma n}}{n^{\alpha}} = +\infty$.

4)
Pour tout
$$q \in]-1,1[: \lim_{n \to +\infty} n^{\alpha}q^n = 0.$$

Exercice 4

Déterminer
$$\lim_{n \to +\infty} \frac{n^2 (\ln n)^3}{e^n}$$
.