Exercice

Soit
$$f$$
 la fonction définie sur \mathbf{R} par $f(x) = \begin{cases} xe^{-\frac{1}{x}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$

- 1)a) Montrer que f est continue à droite en 0.
- b) Montrer que f est dérivable à droite en 0 et préciser $f'_d(0)$.
- 2)a) Justifier que f est dérivable sur \mathbf{R}^* , puis calculer f'(x) pour tout $x \neq 0$.
- b) Déterminer la limite de f en $+\infty$ et en $-\infty$.
- c) A l'aide d'un changement de variable, déterminer la limite de f en 0^- .
- d)Dresser le tableau de variations de f.
- 3)
a) Donner le développement limité à l'ordre 2 en 0 de
 $\boldsymbol{e}^u.$

b) En déduire que
$$\forall x \neq 0$$
, $f(x) = x - 1 + \frac{1}{2x} + o(\frac{1}{x})$.

On admettra que cette égalité est encore valable en $-\infty$.

- c) Montrer que \mathscr{C}_f admet une asymptote oblique D dont on préciser a l'équation. Etudier la position relative de \mathscr{C}_f et D au voisinage de $+\infty$ et $-\infty$.
- d) Tracer \mathscr{C}_f et D.