DS2 ecg2 maths appliquées - 13/11/2024

EXERCICE 1

Dans tout l'exercice, n est un entier supérieur ou égal à 2.

On dit qu'une matrice $A \in M_n(R)$ est nilpotente s'il existe un entier naturel k non nul tel que

$$A^{k-1} \neq 0_n \text{ et } A^k = 0_n$$

où 0_n représente la matrice carrée nulle d'ordre n.

Soit $A \in M_n(R)$. On dit que le couple (Δ, N) est une décomposition de Dunford de A si

$$\begin{cases} \Delta \text{ est une matrice diagonalisable} \\ N \text{ est une matrice nilpotente} \\ \Delta N = N\Delta \text{ et } A = N + \Delta \end{cases}$$

1. On pose

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad \Delta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad N = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$

Vérifier que (Δ, N) est une décomposition de Dunford de A.

Dans toute la suite de l'exercice, on pose :

$$A = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \ N = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \ \Delta = \begin{pmatrix} 3 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 2. a) Déterminer les valeurs propres de A.
 - b) A est-elle diagonalisable?
- 3. On considère les matrices colonnes

$$X_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ et } X_3 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

- a) Calculer les produits ΔX_1 , ΔX_2 et ΔX_3 .
- b) Justifier que Δ est diagonalisable et déterminer P inversible telle que $\Delta = PDP^{-1}$.
- c) Calculer P^{-1} .
- 4. a) Etablir que N est une matrice nilpotente.
 - b) Vérifier que (Δ, N) est une décomposition de Dunford de la matrice A.
 - c) En utilisant la formule du binôme de Newton que l'on justifiera, donner pour tout entier $p \ge 1$, l'expression de A^p en fonction des puissances de Δ , de N et de p.
 - d) Etablir que pour tout entier naturel $k \ge 1$, $\Delta^k N = N \Delta^k = N$.
 - e) Montrer que pour tout entier naturel $k \ge 1$, $\Delta^k = PD^kP^{-1}$.
 - f) Proposer pour tout entier $p \geq 1$, une décomposition de Dunford de A^p .

Exercice 2

Les questions 5)6)7)8) ont été modifiées par rapport au sujet de concours initial.

Soit la matrice
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$$
.

On considère l'application f qui, à toute matrice de $\mathcal{M}_2(\mathbb{R})$, associe :

$$f(M) = AM$$

On pose
$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

On rappelle que la famille $\mathcal{B} = (E_1, E_2, E_3, E_4)$ est une base de $\mathcal{M}_2(\mathbb{R})$.

On note $B = \mathcal{M}_{\mathcal{B}}(f)$ et I_4 la matrice unité d'ordre 4.

- 1) Vérifier que A n'est pas inversible.
- 2) Déterminer les valeurs propres de la matrice A, puis trouver les sous-espaces propres associés à ces valeurs propres.
- 3) Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 4) a) Déterminer une base de Ker(f) et vérifier que Ker(f) est de dimension 2.
 - b) En déduire la dimension de Im(f).
 - c) Calculer les matrices $f(E_1)$, $f(E_2)$, $f(E_3)$, $f(E_4)$, puis écrire chacune comme combinaison linéaire de E_1, E_2, E_3, E_4 . Donner alors une base de Im(f).
- 5) a) Ecrire la matrice B.
 - b) Déterminer soigneusement le rang de B et de $B 7I_4$.
 - c) En déduire les valeurs propres de B. Justifier que B est diagonalisable.

Dans la suite de l'exercice, on généralise. A est une matrice **quelconque** de $\mathcal{M}_2(\mathbb{R})$. On admet que A et B possèdent des valeurs propres et on se propose de montrer que ce sont les mêmes.

6) Montrer que λ est valeur propre de $B \iff \exists M \neq 0 \mid f(M) = \lambda M$.

On pourra utiliser l'application identique de $\mathcal{M}_2(\mathbb{R})$ qu'on notera Id.

- 7) Soit λ une valeur propre de A et X un vecteur propre associé. On pose V=X tX .
 - a) Justifier que V appartient à $\mathcal{M}_2(\mathbb{R})$.
 - b) Montrer que $f(V) = \lambda V$.
 - c) A l'aide de la question 6), conclure que λ est valeur propre de B .
- 8) Soit λ une valeur propre de B. D'après la question 6), il existe alors une matrice non nulle $M \in \mathcal{M}_2(\mathbb{R})$ telle que $f(M) = \lambda M$.

1

En considérant les colonnes C_1 et C_2 de M, montrer que λ est valeur propre de A.

Exercice 3

Partie A

Dans cette partie, on étudie les fonctions sh et ch, appelées respectivement $sinus\ hyperbolique$ et $cosinus\ hyperbolique$ définies sur ${\bf R}$ par :

$$\forall x \in \mathbf{R}, \ sh(x) = \frac{e^x - e^{-x}}{2} \ \text{et} \ ch(x) = \frac{e^x + e^{-x}}{2}.$$

- 1)Etudier la parité des fonctions sh et ch.
- 2)a) Déterminer $\lim_{x\to -\infty} sh(x)$ et $\lim_{x\to +\infty} sh(x)$.
- b) Justifier que sh est dérivable sur \mathbf{R} , calculer sa dérivée et l'exprimer à l'aide de la fonction ch.
- c) Dresser le tableau de variations de sh.
- d)Etudier le signe de sh(x) suivant les valeurs de x.
- e)Etudier la convexité de la fonction sh.
- 3)a)Déterminer $\lim_{x \to -\infty} ch(x)$ et $\lim_{x \to +\infty} ch(x)$.
- b) Justifier que ch est dérivable sur \mathbf{R} , calculer sa dérivée et l'exprimer à l'aide de la fonction sh.
- c)Dresser le tableau de variations de ch, puis vérifier : $\forall x \in \mathbf{R}^*, ch(x) > 1$.
- d)Etudier la convexité de la fonction ch.
- 4)a)Montrer que $\forall x \in \mathbf{R}, \ ch(x) > sh(x)$.
- b)Montrer que $\forall x \in \mathbf{R}, (ch(x))^2 = 1 + (sh(x))^2$.
- c)Montrer que $\forall x \geq 0, \ sh(x) \geq x.$
- d)Tracer sur un même graphique les courbes représentatives des fonctions sh et ch ainsi que leur tangente au point d'abscisse 0.

Partie B

Dans cette partie, on étudie la fonction f définie sur $[0, +\infty[$ par :

$$\forall x > 0, \ f(x) = \frac{x s h(x)}{c h(x) - 1} \ \text{et} \ f(0) = 2.$$

- 5)a)Ecrire le développement limité en 0 à l'ordre 1 de la fonction sh.
- b)Ecrire le développement limité en 0 à l'ordre 2 de la fonction ch.
- 6)a)A l'aide de la question 5), montrer que f est continue à droite en 0.
- b) Conclure que f est continue sur $[0, +\infty[$.
- 7) a) Justifier que f est dérivable sur $]0,+\infty[$, puis montrer à l'aide de la question A4) b) que

$$\forall x > 0, \ f'(x) = \frac{sh(x) - x}{chx - 1}.$$

- b) Montrer que $f(x) \underset{+\infty}{\sim} x$. En déduire $\lim_{x \to +\infty} f(x)$.
- c)Dresser le tableau de variations de f.
- d) On admet que les fonctions sh et ch admettent un développement limité à l'ordre 3 en 0 donné par :

$$sh(x) = x + \frac{x^3}{6} + o(x^3)$$
 et $ch(x) = 1 + \frac{x^2}{2} + o(x^3)$.

Montrer alors que $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x}=0$. Que peut-on en conclure?

- 8)a)Montrer que $f(x) x \sim \frac{2x}{e^x}$.
- b) En déduire $\lim_{x\to +\infty} (f(x)-x)$. Interpréter graphiquement ce résult at.
- 9)Pour tout $x \ge 0$, on pose :

$$g(x) = xsh(x) + 2 - 2ch(x).$$

- a) Justifier que g est de classe C^2 sur $[0, +\infty[$ et que $\forall x \geq 0, \ g''(x) = xsh(x).$
- b) En déduire le sens de variation de g', puis le signe de g'.
- c)Conclure que $\forall x \geq 0, \ g(x) \geq 0.$
- d)Montrer que $\forall x > 0$, $f''(x) = \frac{g(x)}{(ch(x) 1)^2}$. Conclure que f est convexe.
- 10) Tracer l'allure de \mathscr{C}_f et tous les éléments qui vous paraissent utiles.