Exercice 1 (ecricome 2020)

Partie A:

$$1)M = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, M - I_3 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} \text{ et } (M - I_3)^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

 $2)(M-I_3)^2=0$ donc $P(X)=(X-1)^2$ est un polynôme annulateur de M. D'après le cours, $sp(M)\subset \{\text{racines de }P\}$, c'est-à-dire $sp(M)\subset \{1\}$. 1 est donc l'unique valeur propre possible de M.

3)0 n'est pas valeur propre de M donc M est inversible.

 $M-I_3$ est de rang inférieur à 3 car sa deuxième colonne est nulle. Elle n'est donc pas inversible, ce qui prouve que 1 est valeur propre de M et en conséquence que $sp(M) = \{1\}$.

Supposons M diagonalisable. Alors, il existe $P \in \mathcal{M}_3(\mathbf{R})$ inversible et $D \in \mathcal{M}_3(\mathbf{R})$ diagonale telles que $M = PDP^{-1}$, où D porte sur sa diagonale les valeurs propres de M.

On a donc $D = I_3$, puis $M = PI_3P^{-1} = I_3$, d'où une contradiction.

Donc M n'est pas diagonalisable.

Partie B:

1)Ici,
$$M = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
.

Cherchons $E_1(M) = \{ U \in \mathcal{M}_{3,1}(\mathbf{R}) \mid (M-I)U = 0 \}.$

Posons
$$U = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

$$\iff x = y + z.$$

Donc
$$E_1(M) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x = y + z \right\} = \left\{ \begin{pmatrix} y + z \\ y \\ z \end{pmatrix}, (y, z) \in \mathbf{R}^2 \right\}.$$

D'où
$$E_1(M) = \text{Vect}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}\right).$$

 $E_1(M) \neq \{0\}$ donc 1 est valeur propre de M.

Le sous-espace propre de M associé à 1 est $E_1(M)$, donnons-en une base.

$$\begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
 est une famille génératrice de $E_1(M)$ et libre car formée

de deux vecteurs non colinéaires.

C'est donc une base de $E_1(M)$ et $dim E_1(M) = 2$.

5) Les colonnes C_1 , C_2 et C_3 de M sont liées car $C_1 + C_2 + C_3 = 0$.

Donc M est de rang inférieur à 3, en conséquence M n'est pas inversible.

6) M n'est pas inversible donc 0 est valeur propre de M et $dim E_0(M) \ge 1$. Par ailleurs, on a vu que $dim E_1(M) = 2$.

On déduit que $dim E_0(M) + dim E_1(M) \geq 3$.

Or, d'après le cours, $dim E_0(M) + dim E_1(M) \leq 3$.

Les deux inégalités donnent : $dim E_0(M) + dim E_1(M) = 3$ (*)

Si M possédait une troisième valeur propre λ distincte de 0 et 1, alors on aurait $dim E_0(M) + dim E_1(M) + dim E_{\lambda}(M) \geq 4$, ce qui n'est pas possible. Donc $sp(M) = \{0, 1\}$.

Enfin, (*) et le théorème de réduction montrent que M est diagonalisable.

Partie C:

7) Pour tous réels a, b et c, on a :

$$a.u + b.v + c.w = 0 \iff a.(1, 1, 1) + b.(1, 0, 1) + c.(1, 1, 0) = (0, 0, 0)$$

$$\iff \begin{cases} a + b + c = 0 & L_1 \\ a + c = 0 & L_2 \\ a + b = 0 & L_3 \end{cases}$$

$$\iff \begin{cases} a + b + c = 0 & L_1 \\ b = 0 & L_2 \leftarrow L_1 - L_2 \\ c = 0 & L_1 \leftarrow L_1 - L_3 \end{cases}$$

$$\iff a = b = c = 0.$$

Donc la famille (u, v, w) est libre.

C'est une famille libre de \mathbb{R}^3 dont le cardinal vaut 3 et coïncide avec la dimension de \mathbb{R}^3 , c'est donc une base de \mathbb{R}^3 .

8)Le vecteur colonne de f(u) dans la base \mathscr{B} est :

$$MU = \begin{pmatrix} 2 & a-1 & -1 \\ 1-a & a & a-1 \\ 1 & a-1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ a \\ a \end{pmatrix}.$$

Donc f(u) = (a, a, a).

De même, le vecteur colonne de f(v) dans la base \mathscr{B} est :

$$MV = \left(\begin{array}{ccc} 2 & a-1 & -1 \\ 1-a & a & a-1 \\ 1 & a-1 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right).$$

Donc f(v) = (1, 0, 1).

9) Comme précédemment, le vecteur colonne de f(w) dans la base \mathscr{B} est :

$$MW = \begin{pmatrix} 2 & a-1 & -1 \\ 1-a & a & a-1 \\ 1 & a-1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a+1 \\ 1 \\ a \end{pmatrix}.$$

Donc f(w) = (a + 1, 1, a)

Puis, $f(w) = \alpha v + \beta w \iff (a + 1, 1, a) = \alpha(1, 0, 1) + \beta(1, 1, 0)$

$$\iff \left\{ \begin{array}{cccc} \alpha & + & \beta & = & a+1 \\ & & \beta & = & 1 \\ \alpha & & = & a \end{array} \right.$$

 $\iff \alpha = a \text{ et } \beta = 1.$

Donc f(w) = a.v + w.

10)Des questions 8) et 9), on déduit :

$$f(u) = a.u = a.u + 0.v + 0.w,$$

$$f(v) = v = 0.u + 1.v + 0.w,$$

$$f(w) = 0.u + a.v + 1.w.$$

Ce qui donne :
$$T = \mathcal{M}_{\mathcal{B}'}(f) = \begin{pmatrix} a & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$$
.

11)T est triangulaire. Ses valeurs propres sont ses éléments diagonaux, elles valent donc 1 et a.

Ce sont aussi les valeurs propres de f donc de M.

Ainsi, $sp(M) = \{1, a\}.$

$$T - aI_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 - a & a \\ 0 & 0 & 1 - a \end{pmatrix}.$$

 $T-aI_3$ est de rang 2 car sa première colonne est nulle et ses deux autres colonnes sont non nulles (du fait que $a \neq 1$) et non colinéaires.

Or,
$$T - aI_3 = \mathcal{M}_{\mathcal{B}'}(f - a\mathrm{Id})$$
 donc $rg(f - a\mathrm{Id}) = rg(T - aI_3) = 2$.

Le théorème du rang donne alors :

$$dim E_a(f) = dim Ker(f - aId) = dim \mathbf{R}^3 - rg(f - aId) = 3 - 2 = 1.$$

Comme $E_a(f)$ et $E_a(M)$ ont même dimension, on déduit : $dim E_a(M) = 1$.

$$T - I_3 = \left(\begin{array}{ccc} a - 1 & 0 & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{array}\right).$$

 $T-I_3$ est de rang 2 car sa deuxième colonne est nulle et ses deux autres colonnes sont non nulles (du fait que $a \neq 1$) et non colinéaires.

Or,
$$T - I_3 = \mathcal{M}_{\mathcal{B}'}(f - \operatorname{Id})$$
 donc $rg(f - \operatorname{Id}) = rg(T - I_3) = 2$.

Le théorème du rang donne alors :

$$dim E_1(f) = dim Ker(f - Id) = dim \mathbf{R}^3 - rg(f - Id) = 3 - 2 = 1.$$

Comme $E_1(f)$ et $E_1(M)$ ont même dimension, on déduit : $dim E_1(M) = 1$.

 $E_1(M)$ et $E_a(M)$ sont les seuls sous-espaces propres de M et la somme de leurs dimensions vaut 2, alors que $M \in \mathcal{M}_3(\mathbf{R})$.

D'après le théorème de réduction, M n'est pas diagonalisable.

 \checkmark Il était possible aussi de chercher une base des sous-espaces propres $E_1(M)$ et $E_a(M)$.

Exercice 2 (ecricome 2020)

Partie A:

1)La fonction $t \mapsto \frac{t^{2n}-1}{t+1}$ est continue sur \mathbf{R}_+ .

D'après le cours, f_n est une primitive sur \mathbf{R}_+ de la fonction $x \mapsto \frac{x^{2n}-1}{x+1}$.

 f_n est donc dérivable sur \mathbf{R}_+ et $\forall x \ge 0$, $f'_n(x) = \frac{x^{2n} - 1}{x + 1}$.

Enfin, f'_n est continue sur \mathbf{R}_+ comme quotient de deux fonctions polynomiales (continues).

Ainsi, f_n est de classe C^1 sur \mathbf{R}_+ .

 $2)\forall x \geq 0, \ x+1 > 0 \text{ donc } f'_n(x) \geq 0 \iff x^{2n}-1 \geq 0 \iff x^{2n} \geq 1 \iff x \geq 1$ la dernière équivalence provenant de la croissance de $t \mapsto t^{2n}$ sur $[1, +\infty[$. f_n est donc décroissante sur [0, 1] et croissante sur $[1, +\infty[$.

 $3)f'_n$ est de classe C^1 sur \mathbf{R}_+ comme quotient de deux fonctions polynomiales (de classe C^1). Ainsi, f_n est de classe C^2 sur \mathbf{R}_+ et pour tout $x \geq 0$:

$$f_n''(x) = \left(f_n'(x)\right)' = \frac{2nx^{2n-1}(x+1) - (x^{2n}-1)}{(x+1)^2} = \frac{(2n-1)x^{2n} + 2nx^{2n-1} + 1}{(x+1)^2}.$$

Pour tout $n \in \mathbb{N}^*$ et tout $x \ge 0$, le numérateur est positif comme somme de nombres positifs.

Le dénominateur est positif car c'est un carré.

Donc $\forall x \geq 0, f_n''(x) \geq 0$, ce qui montre que f_n est convexe sur \mathbf{R}_+ .

4)a) $g_n: x \mapsto x^n$ est dérivable sur $[1, +\infty[$ et $\forall x \ge 1, \ g'_n(x) = nx^{n-1}$. On a alors $\forall x \ge 1, \ g'_n(x) \ge n$.

D'après l'inégalité des accroissements finis, pour tous réels a et b de $[1, +\infty[$ tels que $a \le b$, on a : $g_n(b) - g_n(a) \ge n(b-a)$.

En prenant a = 1 et $b = t^2$, on obtient pour tout $t \ge 1$:

$$g_n(t^2) - g_n(1) \ge n(t^2 - 1)$$
, c'est-à-dire : $(t^2)^n - 1^n \ge n(t^2 - 1)$.

On conclut que $\forall t > 1, \ t^{2n} - 1 > n(t^2 - 1).$

✓ On pouvait aussi étudier les variations, puis le signe sur $[1,+\infty[$ de la fonction $h:t\mapsto t^{2n}-1-n(t^2-1).$

4)b)Pour tout $x \ge 1$, on a:

$$f_n(x) - f_n(1) = \int_0^x \frac{t^{2n} - 1}{t+1} dt - \int_0^1 \frac{t^{2n} - 1}{t+1} dt = \int_1^x \frac{t^{2n} - 1}{t+1} dt \quad (*)$$

En remarquant que $t^2 - 1 = (t - 1)(t + 1)$, l'inégalité 4)a) s'écrit :

$$\forall t \ge 1, \ \frac{t^{2n} - 1}{t + 1} \ge n(t - 1).$$

En intégrant cette inégalité entre les bornes croissantes 1 et x, on obtient :

$$\int_{1}^{x} \frac{t^{2n} - 1}{t + 1} dt \ge \int_{1}^{x} n(t - 1) dt \quad (**)$$

Or,
$$\int_{1}^{x} n(t-1)dt = \left[n \frac{(t-1)^{2}}{2} \right]_{1}^{x} = n \frac{(x-1)^{2}}{2}$$
.

En recollant (*) et (**), on déduit : $f_n(x) - f_n(1) \ge n \frac{(x-1)^2}{2}$.

Ainsi,
$$\forall x \ge 1$$
, $f_n(x) \ge f_n(1) + \frac{(x-1)^2}{2}$.

4)c)
$$\lim_{x \to +\infty} f_n(1) + \frac{(x-1)^2}{2} = +\infty.$$

Par passage à la limite dans 4)b): $\lim_{x \to +\infty} f_n(x) = +\infty$.

$$5)f_n(0) = \int_0^0 \frac{t^{2n} - 1}{t+1} dt = 0.$$

 f_n est décroissante sur [0,1] (voir A2). Donc $f_n(1) < f_n(0) = 0$.

6)La question A2) donne:

x	0		1		$+\infty$
$f'_n(x)$		+	0	_	
$f_n(x)$	0		$f_n(1)$		→ +∞

 f_n est strictement négative sur]0,1] donc l'équation $f_n(x)=0$ ne possède pas de solution sur]0,1].

 f_n est continue (car dérivable) et strictement croissante sur $]1, +\infty[$.

D'après le théorème de bijection, elle réalise une bijection de $]1,+\infty[$ sur $]f_n(1),+\infty[$.

Or, $0 \in]f_n(1), +\infty[\text{ car } f_n(1) < 0.$

0 admet donc un unique antécédent par f_n dans $]1, +\infty[$.

Notons x_n cet antécédent, il est alors l'unique solution strictement positive de l'équation $f_n(x) = 0$ et tel que $x_n > 1$.

7)Pour tout $x \ge 0$, on a :

$$f_{n+1}(x) - f_n(x) = \int_0^x \frac{t^{2n+2} - 1}{t+1} dt - \int_0^x \frac{t^{2n} - 1}{t+1} dt$$

$$= \int_0^x \left(\frac{t^{2n+2} - 1}{t+1} - \frac{t^{2n} - 1}{t+1} \right) dt$$

$$= \int_0^x \frac{t^{2n+2} - t^{2n}}{t+1} dt$$

$$= \int_0^x \frac{t^{2n}(t^2 - 1)}{t+1} dt$$

$$= \int_0^x \frac{t^{2n}(t - 1)}{t+1} dt$$

$$= \int_0^x \left(t^{2n+1} - t^{2n} \right) dt$$

$$= \left[\frac{t^{2n+2}}{2n+2} - \frac{t^{2n+1}}{2n+1} \right]_0^x$$

$$= \frac{x^{2n+2}}{2n+2} - \frac{x^{2n+1}}{2n+1}$$

$$= x^{2n+1} \left(\frac{x}{2n+2} - \frac{1}{2n+1} \right).$$

8)a)Pour tout $n \in \mathbf{N}^*$, on a :

$$x \ge \frac{2n+2}{2n+1} \Longleftrightarrow \frac{x}{2n+2} \ge \frac{1}{2n+1} \Longleftrightarrow \frac{x}{2n+2} - \frac{1}{2n+1} \ge 0.$$
Ainsi, $\forall x \ge \frac{2n+2}{2n+1}$, $\frac{x}{2n+2} - \frac{1}{2n+1} \ge 0$ et $x^{2n+1} \ge 0$.

Par produit,
$$\forall x \ge \frac{2n+2}{2n+1}, \ x^{2n+1} \left(\frac{x}{2n+2} - \frac{1}{2n+1} \right).$$

Compte tenu de la question 7), on déduit : $f_{n+1}(x) - f_n(x) \ge 0$.

Donc
$$\forall n \in \mathbf{N}^*, \forall x \ge \frac{2n+2}{2n+1}, f_{n+1}(x) \ge f_n(x).$$

8)b)L'hypothèse de l'énoncé $x_n \ge \frac{2n+2}{2n+1}$ permet d'appliquer l'inégalité de la question 8)a) avec $x \to x_n$, ce qui donne : $f_{n+1}(x_n) \ge f_n(x_n) = 0$. Donc $\forall n \in \mathbf{N}^*, \ f_{n+1}(x_n) \ge 0$.

8)c)Par construction, x_{n+1} est racine de f_{n+1} donc $f_{n+1}(x_{n+1}) = 0$.

Grâce à la question 8)b), on a alors $\forall n \in \mathbf{N}^*, f_{n+1}(x_n) \geq f_{n+1}(x_{n+1}).$

Comme x_n et x_{n+1} sont des éléments de $[1, +\infty[$ et que f_{n+1} est strictement croissante sur $[1, +\infty[$, on peut déduire que $\forall n \in \mathbf{N}^*, \ x_n \geq x_{n+1}$.

On conclut que la suite $(x_n)_{n \in \mathbb{N}^*}$ est décroissante.

Par ailleurs, la suite $(x_n)_{n \in \mathbb{N}^*}$ est minorée par 1, ce qui permet de conclure qu'elle est convergente.

9)a) On sait déjà que $\forall n \in \mathbf{N}^*, \ f_n(1) \leq 0$ d'après la question 5).

Majorons maintenant $f_n(1) = \int_0^1 \frac{t^{2n} - 1}{t+1} dt$.

Pour tout $t \in [0,1]$, on a : $t^{2n} \ge 0$ donc $t^{2n} - 1 \ge -1$, puis en divisant membre à membre par t + 1 > 0 :

$$\frac{t^{2n} - 1}{t + 1} \ge -\frac{1}{t + 1}.$$

En intégrant l'inégalité entre les bornes croissantes 0 et 1, on obtient :

$$\int_0^1 \frac{t^{2n} - 1}{t+1} dt \ge \int_0^1 -\frac{1}{t+1} dt.$$

Enfin,
$$\int_0^1 \frac{t^{2n} - 1}{t + 1} dt = f_n(1)$$
 et $\int_0^1 -\frac{1}{t + 1} dt = \left[-\ln(t + 1) \right]_0^1 = -\ln 2$.
Donc $f_n(1) \ge -\ln 2$.

On conclut que $\forall n \in \mathbf{N}^*, -\ln 2 \le f_n(1) \le 0.$

9)b) On sait déjà grâce à la question 6) que $\forall n \in \mathbf{N}^*, \ 0 \le x_n - 1$.

Pour obtenir l'inégalité de droite, utilisons la question 4)b) avec $x \to x_n$, ce qui est licite car $x_n \ge 1$.

On obtient pour tout
$$n \in \mathbf{N}^*$$
: $\underbrace{f_n(x_n)}_{=0} \ge f_n(1) + \frac{n}{2}(x_n - 1)^2$

ou encore
$$\frac{n}{2}(x_n - 1)^2 \le -f_n(1)$$
 (*)

Or, d'après la question 9)a) : $f_n(1) \ge -\ln 2$ donc $-f_n(1) \le \ln 2$ (**)

Par recollement de (*) et (**), on a : $\frac{n}{2}(x_n - 1)^2 \le \ln 2$,

puis
$$(x_n - 1)^2 \le \frac{2 \ln 2}{n}$$
.

Par croissance de la fonction $x \mapsto \sqrt{x}$, on déduit : $\sqrt{(x_n - 1)^2} \le \sqrt{\frac{2 \ln 2}{n}}$. Enfin, $\sqrt{(x_n - 1)^2} = |x_n - 1| = x_n - 1$ car $x_n - 1 \ge 0$.

Donc
$$x_n - 1 \le \sqrt{\frac{2\ln 2}{n}}$$
.

Finalement, $\forall n \in \mathbf{N}^*, \ 0 \le x_n - 1 \le \sqrt{\frac{2\ln 2}{n}}.$

$$\lim_{n \to +\infty} \sqrt{\frac{2\ln 2}{n}} = 0.$$

D'après la propriété des gendarmes, $\lim_{n \to +\infty} (x_n - 1) = 0$ donc $\lim_{n \to +\infty} x_n = 1$.

10) La fonction $(x,y) \mapsto x$ est de classe C^2 sur $\mathbf{R}_+^* \times \mathbf{R}_+^*$ (car polynômiale) et à valeurs dans \mathbf{R}_+^* .

 f_n est de classe C^2 sur \mathbf{R}_+^* .

Par composée, $(x,y) \mapsto f_n(x)$ est de classe C^2 sur $\mathbf{R}_+^* \times \mathbf{R}_+^*$.

De même, $(x,y) \mapsto f_n(y)$ est de classe C^2 sur $\mathbf{R}_+^* \times \mathbf{R}_+^*$.

Par produit, $(x,y) \mapsto f_n(x)f_n(y)$ est de classe C^2 sur $\mathbf{R}_+^* \times \mathbf{R}_+^*$.

Pour tout $(x, y) \in \mathbf{R}_+^* \times \mathbf{R}_+^*$, on a:

$$\partial_1 G_n(x,y) = f'_n(x) f_n(y)$$
 et $\partial_2 G_n(x,y) = f_n(x) f'_n(y)$.

11)Soit $(x, y) \in \mathbf{R}_{+}^{*} \times \mathbf{R}_{+}^{*}$.

(x,y) est un point critique de G_n

$$\iff \partial_1 G_n(x,y) = 0 \text{ et } \partial_2 G_n(x,y) = 0$$

$$\iff \begin{cases} f'_n(x)f_n(y) = 0 \\ \text{et} \\ f_n(x)f'_n(y) = 0 \end{cases}$$

$$\iff \begin{cases} f'_n(x) = 0 \text{ ou } f_n(y) = 0 \\ \text{et} \\ f_n(x) = 0 \text{ ou } f'_n(y) = 0 \end{cases}$$

$$\iff \begin{cases} x = 1 \text{ ou } y = x_n \\ \text{et} \\ x = x_n \text{ ou } y = 1 \end{cases}$$

$$\iff \begin{cases} x = 1 \text{ et } y = 1 \\ \text{ou} \\ x = x_n \text{ et } y = x_n \end{cases}$$

Les points critiques de G_n sont donc (1,1) et (x_n,x_n) .

 $(12)G_n$ est de classe C^2 sur $\mathbf{R}_+^* \times \mathbf{R}_+^*$ donc admet des dérivées partielles d'ordre deux données par :

$$\partial_{1,1}^2 G_n(x,y) = \partial_1 \left(\partial_1 G_n(x,y) \right) = \partial_1 \left(f'_n(x) f_n(y) \right) = f''_n(x) f_n(y),$$

$$\partial_{1,2}^2 G_n(x,y) = \partial_1 \left(\partial_2 G_n(x,y) \right) = \partial_1 \left(f_n(x) f_n'(y) \right) = f_n'(x) f_n'(y),$$

$$\partial_{2,1}^2 G_n(x,y) = \partial_2 \left(\partial_1 G_n(x,y) \right) = \partial_2 \left(f'_n(x) f_n(y) \right) = f'_n(x) f'_n(y),$$

$$\partial_{2,2}^2 G_n(x,y) = \partial_2 \left(\partial_2 G_n(x,y) \right) = \partial_2 \left(f_n(x) f_n'(y) \right) = f_n(x) f_n''(y).$$

On déduit :
$$\nabla^2 G_n(x_n, x_n) = \begin{pmatrix} f_n''(x_n) f_n(x_n) & f_n'(x_n) f_n'(x_n) \\ f_n'(x_n) f_n'(x_n) & f_n(x_n) f_n''(x_n) \end{pmatrix}$$
.

Or,
$$f_n(x_n) = 0$$
 donc $\nabla^2 G_n(x_n, x_n) = \begin{pmatrix} 0 & (f'_n(x_n))^2 \\ (f'_n(x_n))^2 & 0 \end{pmatrix}$.

De même,
$$\nabla^2 G_n(1,1) = \begin{pmatrix} f''_n(1)f_n(1) & f'_n(1)f'_n(1) \\ f'_n(1)f'_n(1) & f_n(1)f''_n(1) \end{pmatrix}$$
.

Or,
$$f_n'(1) = 0$$
 et $f_n''(1) = \frac{2n-1+2n+1}{4} = n$, grâce à la question 3).

Donc
$$\nabla^2 G_n(1,1) = \begin{pmatrix} nf_n(1) & 0 \\ 0 & nf_n(1) \end{pmatrix}$$
.

13) λ est valeur propre de $\nabla^2 G_n(x_n,x_n)$

$$\iff \nabla^2 G_n(x_n, x_n) - \lambda I_2$$
 n'est pas inversible

$$\iff det(\nabla^2 G_n(x_n, x_n) - \lambda I_2) = 0.$$

$$\iff (-\lambda) \times (-\lambda) - (f'_n(x_n))^2 \times (f'_n(x_n))^2 = 0$$

$$\iff \lambda^2 = (f_n'(x_n))^4$$

$$\iff \lambda = (f'_n(x_n))^2 \text{ ou } \lambda = -(f'_n(x_n))^2.$$

Les valeurs propres de $\nabla^2 G_n(x_n, x_n)$ sont non nulles (car $f'_n(x_n) \neq 0$ du fait que $x_n \neq 1$) et de signes contraires.

Donc G_n n'admet pas d'extrémum local en (x_n, x_n) (c'est un point selle).

 $14)\nabla^2 G_n(1,1)$ est diagonale. Ses valeurs propres sont ses éléments diagonaux, à savoir $nf_n(1)$.

On sait que $f_n(1) < 0$ d'après la question 5) donc $nf_n(1) < 0$.

Les valeurs propres (confondues) de $\nabla^2 G_n(1,1)$ sont srictement négatives.

Donc G_n admet en (1,1) un maximum local.

Exercice 3 (ecricome 2020)

 $1)I_n(a)$ est une intégrale de Riemann convergente car son paramètre est $n \ge 2 > 1$.

$$I_n(a) = \lim_{x \to +\infty} \int_a^x \frac{1}{t^n} dt = \lim_{x \to +\infty} \int_a^x t^{-n} dt = \lim_{x \to +\infty} \left[\frac{t^{-n+1}}{-n+1} \right]_a^x$$

$$= \lim_{x \to +\infty} \left[\frac{1}{(-n+1)t^{n-1}} \right]_a^x = \lim_{x \to +\infty} \left(\frac{1}{(-n+1)x^{n-1}} - \underbrace{\frac{1}{(-n+1)a^{n-1}}}_{constante} \right).$$

$$n-1 \ge 1 \text{ donc } \lim_{x \to +\infty} x^{n-1} = +\infty, \text{ puis } \lim_{x \to +\infty} \frac{1}{(-n+1)x^{n-1}} = 0.$$

Donc
$$I_n(a) = -\frac{1}{(-n+1)a^{n-1}} = \frac{1}{(n-1)a^{n-1}}.$$

2)a)•
$$\forall t \ge 0, \ f(t) \ge 0 \ \text{car } a > 0 \ \text{et } t^4 \ge 0.$$

• f est continue sur $]-\infty, a[$ (fonction nulle) et sur $[a, +\infty[$ comme quotient d'une fonction constante et d'une fonction polynomiale.

Donc f est continue sur \mathbf{R} sauf peut-être en a.

•
$$f$$
 est nulle sur $]-\infty, a[$ donc $\int_{-\infty}^{a} f(t)dt$ converge et vaut 0.

$$\int_a^{+\infty} f(t)dt$$
 converge car elle est de même nature que l'intégrale $I_4(a)$.

Par Chasles,
$$\int_{-\infty}^{+\infty} f(t)dt$$
 converge et on a :

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{-\infty}^{a} f(t)dt + \int_{a}^{+\infty} f(t)dt = 0 + 3a^{3}I_{4}(a) = 3a^{3} \times \frac{1}{3a^{3}} = 1.$$

Donc f est une densité de probabilité.

2)b) La fonction de répartition ${\cal F}_X$ de X est donnée par :

$$\forall x \in \mathbf{R}, \ F_X(x) = \int_{-\infty}^x f(t)dt.$$

On distingue deux cas:

• premier cas : x < a

f est nulle sur $]-\infty, a[$ donc sur $]-\infty, x]$. Ainsi, $F_X(x)=0$.

• second cas : $x \ge a$

$$F_X(x) = \int_{-\infty}^a f(t)dt + \int_a^x f(t)dt = \int_{-\infty}^a 0dt + \int_a^x \frac{3a^3}{t^4}dt = 0 + 3a^3 \left[-\frac{1}{3t^3} \right]_a^x$$
$$= 3a^3 \left(-\frac{1}{3x^3} + \frac{1}{3a^3} \right) = 1 - \frac{a^3}{x^3}.$$

Ainsi,
$$F_X(x) = \begin{cases} 0 & \text{si } x < a \\ 1 - \frac{a^3}{x^3} & \text{si } x \ge a. \end{cases}$$

2)c)X admet une espérance si et seulement si $\int_{-\infty}^{+\infty} t f(t) dt$ est absolument convergente.

f est nulle sur $]-\infty,a[$ donc $\int_{-\infty}^a \bigl|tf(t)\bigr|dt$ converge et vaut 0.

De plus, $\int_a^{+\infty} \left| tf(t) \right| dt = \int_a^{+\infty} \frac{3a^3}{t^3} dt$ converge car elle a même nature que

l'intégrale convergente $I_3(a)$.

Par Chasles, $\int_{-\infty}^{+\infty} |tf(t)| dt$ converge.

Donc X admet une espérance donnée par :

$$E(X) = \int_{-\infty}^{+\infty} t f(t) dt = \int_{-\infty}^{a} t f(t) dt + \int_{a}^{+\infty} t f(t) dt = \int_{-\infty}^{a} 0 dt + \int_{a}^{+\infty} \frac{3a^{3}}{t^{3}} dt$$
$$= 0 + 3a^{3} I_{3}(a) = 3a^{3} \times \frac{1}{2a^{2}} = \frac{3a}{2}.$$

2)d)X admet une variance si et seulement si elle admet un moment d'ordre deux, c'est-à-dire si $\int_{-\infty}^{+\infty} t^2 f(t) dt$ converge.

Comme précédemment, on est ramené à prouver la convergence de $\int_a^{+\infty} t^2 f(t) dt$,

c'est-à-dire de $\int_a^{+\infty} \frac{3a^3}{t^2} dt$.

Or, l'intégrale ci-dessus converge car elle a même nature que l'intégrale convergente $I_2(a)$.

Donc X admet un moment d'ordre deux donné par :

$$E(X^2) = \int_a^{+\infty} \frac{3a^3}{t^2} dt = 3a^3 I_2(a) = 3a^3 \times \frac{1}{a} = 3a^2.$$

Enfin, la formule de Koënig donne :

$$V(X) = E(X^2) - E(X)^2 = 3a^2 - \left(\frac{3a}{2}\right)^2 = \frac{3a^2}{4}.$$

3)a)
$$\varphi: x \mapsto \frac{a}{x^{1/3}}$$
 est dérivable sur]0,1] et $\forall x > 0, \ \varphi'(x) = -\frac{a}{3x^{4/3}} < 0.$

Donc φ est strictement décroissante sur [0,1].

De plus, φ est continue sur]0,1] comme quotient d'une fonction constante et d'une fonction puissance.

$$\varphi$$
 est une bijection de $]0,1]$ sur $\varphi(]0,1]) = \left[\varphi(1), \lim_{x\to 0^+} \varphi(x)\right] = [a,+\infty[.$

Comme $U(\Omega) =]0,1)$ on a donc $Y(\Omega) = [a, +\infty[$.

3)b)La fonction de répartition F_Y de Y est donnée par :

$$\forall x \in \mathbf{R}, \ F_Y(x) = P(Y \le x).$$

On distingue deux cas:

• premier cas : x < a $F_V(x) = 0 \text{ car } Y(\Omega) = [a, +\infty[.$

• deuxième cas : $x \ge a$

$$F_{Y}(x) = P(Y \le x) = P\left(\frac{a}{U^{1/3}} \le x\right) = P\left(\frac{U^{1/3}}{a} \ge \frac{1}{x}\right) = P\left(U^{1/3} \ge \frac{a}{x}\right)$$

$$= P\left(U \ge \frac{a^{3}}{x^{3}}\right) = 1 - P\left(U < \frac{a^{3}}{x^{3}}\right) = 1 - F_{U}\left(\frac{a^{3}}{x^{3}}\right).$$
Or, $0 < \frac{a^{3}}{x^{3}} \le 1$ et $\forall t \in]0,1]$, $F_{U}(t) = t$. Donc $F_{U}\left(\frac{a^{3}}{x^{3}}\right) = \frac{a^{3}}{x^{3}}.$
On déduit que $F_{Y}(x) = 1 - \frac{a^{3}}{x^{3}}$.

On déduit que $F_Y(x) = 1 - \frac{a^3}{x^3}$.

Ainsi,
$$F_Y(x) = \begin{cases} 0 & \text{si } x < a \\ 1 - \frac{a^3}{x^3} & \text{si } x \ge a. \end{cases}$$

On remarque que $\forall x \in \mathbf{R}, F_Y(x) = F_X(x)$.

Les variables aléatoires Y et X ont donc la même fonction de répartition et par conséquent, elles suivent la même loi.

3)c)Comme X et Y ont la même loi, il suffit de simuler nm valeurs de Y. On simule alors nm valeurs de U grâce à la fonction rand, puis on utilise l'égalité $Y = \frac{a}{U^{1/3}}$.

D'où le programme:

4)a)
$$P(X > 2a) = 1 - P(X \le 2a) = 1 - F_X(2a) = 1 - \left(1 - \frac{a^3}{(2a)^3}\right) = \frac{1}{8}.$$

4)b)
$$P_{(X>2a)}(X>6a) = \frac{P(X>2a\cap X>6a)}{P(X>2a)} = \frac{P(X>6a)}{P(X>2a)}$$

car comme $(X > 6a) \subset (X > 2a)$, on a : $(X > 2a \cap X > 6a) = (X > 6a)$.

Enfin,
$$P(X > 6a) = 1 - F_X(6a) = 1 - \left(1 - \frac{a^3}{(6a)^3}\right) = \frac{1}{216}$$
.

On déduit :
$$P_{(X>2a)}(X>6a) = \frac{1/216}{1/8} = \frac{1}{27}$$
.

4)c)programme:

```
a = 10
N = 100000
s1 = 0
s2 = 0
X = simulX(a, 1, N)
for k in range(N):
    if X[0,k] > 2*a :
        s1 = s1 + 1
        if X[0,k] > 6*a:
        s2=s2+1
if s1 > 0:
    print(s2/s1)
```

5)a) V_n est une fonction de l'échantillon $(X_1,...,X_n)$ qui ne dépend pas du paramètre a à estimer. Donc V_n est un estimateur de a.

 $X_1, ..., X_n$ admettent une espérance et V_n est une combinaison linéaire de $X_1, ..., X_n$.

Donc V_n admet une espérance donnée par :

$$E(V_n) = E\left(\frac{2}{3n}\sum_{k=1}^n X_k\right)$$

$$= \frac{2}{3n}\sum_{k=1}^n E(X_k) \text{ par linéarité}$$

$$= \frac{2}{3n}\sum_{k=1}^n E(X) \text{ car } X_k \text{ a même loi que } X$$

$$= \frac{2}{3n}\sum_{k=1}^n \frac{3a}{2}$$

$$= \frac{2}{3n} \times n \times \frac{3a}{2}$$

$$= a$$

Donc V_n est un estimateur sans biais de a.

5)b) $X_1, ..., X_n$ admettent une variance et sont mutuellement indépendantes donc la variable aléatoire $\sum_{k=1}^{n} X_k$ admet une variance.

Donc V_n admet une variance donnée par :

$$V(V_n) = V\left(\frac{2}{3n}\sum_{k=1}^n X_k\right)$$

$$= \left(\frac{2}{3n}\right)^2 V\left(\sum_{k=1}^n X_k\right)$$

$$= \frac{4}{9n^2}\sum_{k=1}^n V(X_k) \text{ par indépendance mutuelle des } X_k$$

$$= \frac{4}{9n^2}\sum_{k=1}^n V(X) \text{ car } X_k \text{ a même loi que } X$$

$$= \frac{4}{9n^2}\sum_{k=1}^n \frac{3a^2}{4}$$

$$= \frac{4}{9n^2} \times n \times \frac{3a^2}{4}$$

$$= \frac{a^2}{3n}.$$

Comme V_n est sans biais, son risque quadratique est égal à sa variance et vaut donc $\frac{a^2}{3n}$.

6)a)Pour tout $x \in \mathbf{R}$, on a :

$$F_{W_n}(x) = P(W_n \le x)$$

$$= 1 - P(W_n > x)$$

$$= 1 - P(X_1 > x \cap ... \cap X_n > x)$$

$$= 1 - P(X_1 > x) \cdots P(X_n > x) \text{ par indépendance des } X_k$$

$$= 1 - P(X > x)^n \text{ car } X_k \text{ a même loi que } X$$

$$= 1 - (1 - P(X \le x))^n$$

$$= 1 - (1 - F_X(x))^n.$$

Or,
$$F_X(x) = \begin{cases} 0 & \text{si } x < a \\ 1 - \frac{a^3}{x^3} & \text{si } x \ge a. \end{cases}$$

Donc
$$F_{W_n}(x) = \begin{cases} 1 - (1 - 0)^n & \text{si } x < a \\ 1 - \left(1 - \left(1 - \frac{a^3}{x^3}\right)\right)^n & \text{si } x \ge a. \end{cases}$$

$$\text{Après simplifications, } F_{W_n}(x) = \left\{ \begin{array}{ll} 0 & \text{ si } x < a \\ 1 - \frac{a^{3n}}{x^{3n}} & \text{ si } x \geq a. \end{array} \right.$$

 F_X est continue sur \mathbf{R} et de classe C^1 sur \mathbf{R} sauf peut-être en a. De même pour F_{W_n} , grâce à l'égalité : $\forall x \in \mathbf{R}, \ F_{W_n}(x) = 1 - \left(1 - F_X(x)\right)^n$. Donc W_n est une variable aléatoire à densité.

6)b)Une densité f_n de W_n est obtenue en dérivant F_{W_n} aux points où F_{W_n} est dérivable, c'est-à-dire sur $\mathbf{R} \setminus \{a\}$ et en lui attribuant une valeur arbitraire positive en a.

On a donc
$$f_n(t) = \begin{cases} 0 & \text{si } t < a \\ \left(1 - \frac{a^{3n}}{t^{3n}}\right)' & \text{si } t > a. \end{cases} = \begin{cases} 0 & \text{si } t < a \\ \frac{3na^{3n}}{t^{3n+1}} & \text{si } t > a. \end{cases}$$

On peut prendre $f_n(a) = \frac{3na^{3n}}{a^{3n+1}} = \frac{3n}{a}$ de sorte à recoller avec la formule de f_n sur $]a, +\infty[$.

Finalement,
$$f_n(t) = \begin{cases} 0 & \text{si } t < a \\ \frac{3na^{3n}}{t^{3n+1}} & \text{si } t \ge a. \end{cases}$$

6)c) W_n admet une espérance si et seulement si $\int_{-\infty}^{+\infty} t f_n(t) dt$ est absolument convergente.

 f_n est nulle sur $]-\infty, a[$ donc $\int_{-\infty}^a |tf_n(t)| dt$ converge et vaut 0.

De plus, $\int_{a}^{+\infty} |tf_n(t)| dt = \int_{a}^{+\infty} \frac{3na^{3n}}{t^{3n}} dt$ converge car elle a même nature que l'intégrale convergente $I_{3n}(a)$.

Par Chasles,
$$\int_{-\infty}^{+\infty} |tf_n(t)| dt$$
 converge.

Donc W_n admet une espérance donnée par :

$$E(W_n) = \int_{-\infty}^{+\infty} t f_n(t) dt = \int_{-\infty}^{a} t f_n(t) dt + \int_{a}^{+\infty} t f_n(t) dt = \int_{a}^{+\infty} \frac{3na^{3n}}{t^{3n}} dt$$
$$= 3na^{3n} I_{3n}(a) = 3na^{3n} \times \frac{1}{(3n-1)a^{3n-1}} = \frac{3na}{3n-1}.$$

Enfin,
$$E(\lambda_n W_n) = a \Leftrightarrow \lambda_n E(W_n) = a \Leftrightarrow \lambda_n = \frac{a}{E(W_n)} \Leftrightarrow \lambda_n = \frac{3n-1}{3n}$$
.

6)d) W_n admet une variance si et seulement si elle admet un moment d'ordre deux, c'est-à-dire si $\int_{-\infty}^{+\infty} t^2 f_n(t) dt$ converge.

On est ramené à prouver la convergence de $\int_a^{+\infty} t^2 f_n(t) dt$, c'est-à-dire de $\int_a^{+\infty} \frac{3na^{3n}}{t^{3n-1}} dt.$

Or, l'intégrale ci-dessus converge car elle a même nature que l'intégrale convergente $I_{3n-1}(a)$.

Donc W_n admet un moment d'ordre deux donné par :

$$E(W_n^2) = \int_a^{+\infty} \frac{3na^{3n}}{t^{3n-1}} dt = 3na^{3n} I_{3n-1}(a) = 3na^{3n} \times \frac{1}{(3n-2)a^{3n-2}}$$
$$= \frac{3na^2}{3n-2}.$$

Puis, la formule de Koënig donne :

$$V(W_n) = E(W_n^2) - E(W_n)^2 = \frac{3na^2}{3n-2} - \left(\frac{3na}{3n-1}\right)^2 = \left(\frac{3n}{3n-2} - \left(\frac{3n}{3n-1}\right)^2\right)a^2.$$

Enfin, $\lambda_n W_n$ admet une variance donnée par :

$$V(\lambda_n W_n) = \lambda_n^2 V(W_n)$$

$$= \left(\frac{3n-1}{3n}\right)^2 \left(\frac{3n}{3n-2} - \left(\frac{3n}{3n-1}\right)^2\right) a^2$$

$$= \left(\left(\frac{3n-1}{3n}\right)^2 \times \frac{3n}{3n-2} - 1\right) a^2$$

$$= \left(\frac{(3n-1)^2}{3n(3n-2)} - 1\right) a^2$$

$$= \frac{(3n-1)^2 - 3n(3n-2)}{3n(3n-2)} a^2$$

$$= \frac{9n^2 - 6n + 1 - 9n^2 + 6n}{3n(3n-2)} a^2$$

$$= \frac{a^2}{3n(3n-2)}.$$

Comme $\lambda_n W_n$ est un estimateur sans biais de a, son risque quadratique est égal à sa variance.

7)a)programme:

```
import numpy as np
def simulV(a,m,n):
    X=simulX(a,m,n)
    V=np.zeros(shape=(1,m))
    for k in range(m):
        V[0,k]=2/(3*n)*sum(X[k,:])
    return V
```

7)b) D'après les questions précédentes, V_n et $\lambda_n W_n$ sont des estimateurs sans biais de a.

Cependant, le risque quadratique de $\lambda_n W_n$ vaut $\frac{a^2}{3n(3n-2)}$ alors que celui de V_n vaut $\frac{a^2}{3n}$.

Le risque quadratique de $\lambda_n W_n$ est donc plus petit que celui de V_n , ce qui prouve que $\lambda_n W_n$ est un meilleur estimateur que V_n .

Les valeurs prises par $\lambda_n W_n$ sont donc plus regroupées autour de a que celles prises par V_n .

Graphiquement, on a donc a=5, les "+" représentant $\lambda_n W_n$ et les "x" représentant V_n .

Enfin, il y a 20 points pour chaque nuage donc m = 20.

Programme:

```
import matplotlib.pyplot as plt
W=simulW(5,20,100)
V=simulV(5,20,100)
abscisse=np.array([[k for k in range(1,21)]])
plt.plot(abscisse,V,"x")
plt.plot(abscisse,W,"+")
```